Systems and methods that utilize machine learning algorithms to facilitate assembly of aids vaccine cocktails
    2.
    发明授权
    Systems and methods that utilize machine learning algorithms to facilitate assembly of aids vaccine cocktails 有权
    利用机器学习算法方便装配疫苗鸡尾酒的系统和方法

    公开(公告)号:US08478535B2

    公开(公告)日:2013-07-02

    申请号:US11324506

    申请日:2005-12-30

    Abstract: The subject invention provides systems and methods that facilitate AIDS vaccine cocktail assembly via machine learning algorithms such as a cost function, a greedy algorithm, an expectation-maximization (EM) algorithm, etc. Such assembly can be utilized to generate vaccine cocktails for species of pathogens that evolve quickly under immune pressure of the host. For example, the systems and methods of the subject invention can be utilized to facilitate design of T cell vaccines for pathogens such HIV. In addition, the systems and methods of the subject invention can be utilized in connection with other applications, such as, for example, sequence alignment, motif discovery, classification, and recombination hot spot detection. The novel techniques described herein can provide for improvements over traditional approaches to designing vaccines by constructing vaccine cocktails with higher epitope coverage, for example, in comparison with cocktails of consensi, tree nodes and random strains from data.

    Abstract translation: 本发明提供了通过诸如成本函数,贪心算法,期望最大化(EM)算法等机器学习算法来促进艾滋病疫苗鸡尾酒组合的系统和方法。可以利用这种装配来产生疫苗鸡尾酒, 在宿主免疫压力下快速发展的病原体。 例如,本发明的系统和方法可以用于促进用于诸如HIV的病原体的T细胞疫苗的设计。 此外,本发明的系统和方法可以与其他应用相结合使用,例如序列比对,基序发现,分类和重组热点检测。 本文所述的新颖技术可以提供改进,以通过构建具有较高表位覆盖度的疫苗混合物来设计疫苗的传统方法,例如与来自数据的共同体,树节点和随机菌株的鸡尾酒相比。

    Consistent phrase relevance measures
    3.
    发明授权
    Consistent phrase relevance measures 有权
    一致的短语相关性度量

    公开(公告)号:US08290946B2

    公开(公告)日:2012-10-16

    申请号:US12144647

    申请日:2008-06-24

    CPC classification number: G06F17/30687 G06Q30/02

    Abstract: Two methods for measuring keyword-document relevance are described. The methods receive a keyword and a document as input and output a probability value for the keyword. The first method is a similarity-based approach which uses techniques for measuring similarity between two short-text segments to measure relevance between the keyword and the document. The second method is a regression-based approach based on an assumption that if an out-of-document phrase (the keyword) is semantically similar to an in-document phrase, then relevance scores of the in and out-of document phrases should be close to each other.

    Abstract translation: 描述了两种衡量关键字 - 文档相关性的方法。 方法接收关键字和文档作为输入,并输出关键字的概率值。 第一种方法是基于相似性的方法,其使用用于测量两个短文本段之间的相似性的技术来测量关键字和文档之间的相关性。 第二种方法是基于回归的方法,基于一个假设,如果文档外短语(关键字)在语义上类似于文档内短语,则文本内和外的短语的相关性分数应为 彼此接近

    Login authentication using a trusted device
    4.
    发明授权
    Login authentication using a trusted device 有权
    使用可信设备进行登录验证

    公开(公告)号:US08214890B2

    公开(公告)日:2012-07-03

    申请号:US12198914

    申请日:2008-08-27

    Abstract: A user working on a client computer is allowed to remotely login to a server over a computer network. A first secure connection is established between the client and the server. Communications with a trusted device which is in the user's control is established via a communication channel between the trusted device and the client, where this channel is not part of the network. A second secure connection is established between the trusted device and the server through the client, where this second secure connection is tunneled within the first secure connection. The user remotely logs into the server over the second secure connection using the trusted device.

    Abstract translation: 允许在客户端计算机上工作的用户通过计算机网络远程登录到服务器。 在客户端和服务器之间建立第一个安全连接。 通过信任设备和客户端之间的通信信道建立与用户控制中的信任设备的通信,其中该信道不是网络的一部分。 通过客户端在可信设备和服务器之间建立第二安全连接,其中该第二安全连接在第一安全连接内被隧道传送。 用户使用受信任的设备通过第二个安全连接远程登录到服务器。

    AUTOMATIC CONSTRUCTION OF HUMAN INTERACTION PROOF ENGINES
    5.
    发明申请
    AUTOMATIC CONSTRUCTION OF HUMAN INTERACTION PROOF ENGINES 有权
    人类交互防护机器人的自动化建设

    公开(公告)号:US20110314537A1

    公开(公告)日:2011-12-22

    申请号:US12821124

    申请日:2010-06-22

    Abstract: Human Interaction Proofs (“HIPs”, sometimes referred to as “captchas”), may be generated automatically. An captcha specification language may be defined, which allows a captcha scheme to be defined in terms of how symbols are to be chosen and drawn, and how those symbols are obscured. The language may provide mechanisms to specify the various ways in which to obscure symbols. New captcha schemes may be generated from existing specifications, by using genetic algorithms that combine features from existing captcha schemes that have been successful. Moreover, the likelihood that a captcha scheme has been broken by attackers may be estimated by collecting data on the time that it takes existing captcha schemes to be broken, and using regression to estimate the time to breakage as a function of either the captcha's features or its measured quality.

    Abstract translation: 人工交互证明(“HIP”,有时也称为“验证码”)可能会自动生成。 可以定义验证码规范语言,这允许根据如何选择和绘制符号以及这些符号如何被遮蔽来定义验证码方案。 该语言可以提供机制来指定模糊符号的各种方式。 可以通过使用遗传算法从现有规范中生成新的验证码方案,该遗传算法将已经获得成功的现有验证码方案的功能相结合。 此外,验证码计划已被攻击者破坏的可能性可以通过在现有验证码计划被破坏的时间收集数据来估计,并且使用回归来估计作为验证码的特征或函数的破坏时间 其测量质量。

    Learning Element Weighting for Similarity Measures
    6.
    发明申请
    Learning Element Weighting for Similarity Measures 有权
    学习元素加权相似度量

    公开(公告)号:US20110219012A1

    公开(公告)日:2011-09-08

    申请号:US12715417

    申请日:2010-03-02

    CPC classification number: G06F15/18 G06F17/30

    Abstract: Described is a technology for measuring the similarity between two objects (e.g., documents), via a framework that learns the term-weighting function from training data, e.g., labeled pairs of objects, to develop a learned model. A learning procedure tunes the model parameters by minimizing a defined loss function of the similarity score. Also described is using the learning procedure and learned model to detect near duplicate documents.

    Abstract translation: 描述了一种用于通过从训练数据(例如标记的对象对)学习术语加权函数的框架来测量两个对象(例如,文档)之间的相似性的技术,以开发学习的模型。 学习过程通过最小化相似性得分的定义的损失函数来调整模型参数。 还描述了使用学习过程和学习模型来检测近似重复的文档。

    AUTOMATED LEARNING OF FAILURE RECOVERY POLICIES
    7.
    发明申请
    AUTOMATED LEARNING OF FAILURE RECOVERY POLICIES 有权
    自动学习失败恢复政策

    公开(公告)号:US20110214006A1

    公开(公告)日:2011-09-01

    申请号:US12713195

    申请日:2010-02-26

    CPC classification number: G06F11/079 G06F11/0709

    Abstract: Described is automated learning of failure recovery policies based upon existing information regarding previous policies and actions. A learning mechanism automatically constructs a new policy for controlling a recovery process, based upon collected observable interactions of an existing policy with the process. In one aspect, the learning mechanism builds a partially observable Markov decision process (POMDP) model, and computes the new policy base upon the learned model. The new policy may perform automatic fault recovery, e.g., on a machine in a datacenter corresponding to the controlled process.

    Abstract translation: 描述了基于关于先前的策略和动作的现有信息来自动学习故障恢复策略。 学习机制根据现有策略与流程的可观察的交互作用,自动构建一个控制恢复过程的新策略。 在一方面,学习机制构建了部分可观察的马尔可夫决策过程(POMDP)模型,并根据学习模型计算出新的策略基础。 新策略可以执行自动故障恢复,例如在对应于受控进程的数据中心的机器上。

    TASK PREDICTION
    8.
    发明申请
    TASK PREDICTION 有权
    任务预测

    公开(公告)号:US20110107242A1

    公开(公告)日:2011-05-05

    申请号:US12610392

    申请日:2009-11-02

    CPC classification number: G06Q10/10

    Abstract: This patent application pertains to computing scenarios that allow users to more readily accomplish desired tasks. One implementation includes at least one dictionary of potential auto-suggestions that can be generated in relation to user-input. The implementation also includes a text framework configured to weight at least some of the potential auto-suggestions based upon one or more parameters. This implementation further includes a task engine configured to associate tasks with at least some of the potential auto-suggestions.

    Abstract translation: 该专利申请涉及允许用户更容易地完成所需任务的计算场景。 一个实现包括可以相对于用户输入生成的潜在的自动建议的至少一个字典。 该实现还包括被配置为基于一个或多个参数来加权至少一些潜在的自动建议的文本框架。 该实现还包括被配置为将任务与至少一些潜在的自动建议相关联的任务引擎。

    GENERATION OF IMPRESSION PLANS FOR PRESENTING AND SEQUENCING ADVERTISEMENT AND SALES OPPORTUNITIES ALONG POTENTIAL ROUTES
    9.
    发明申请
    GENERATION OF IMPRESSION PLANS FOR PRESENTING AND SEQUENCING ADVERTISEMENT AND SALES OPPORTUNITIES ALONG POTENTIAL ROUTES 审中-公开
    陈述和排序广告的印制计划的生成和潜在的路线上的机会

    公开(公告)号:US20100332315A1

    公开(公告)日:2010-12-30

    申请号:US12492861

    申请日:2009-06-26

    CPC classification number: G06Q30/0247 G06Q30/02 G06Q30/0254 G06Q30/0261

    Abstract: A mobile device may present advertisements to users. However, advertisements may be ineffective or dangerous if presented when the attention of the user is unavailable (e.g., while operating a vehicle at a busy intersection.) It may also be desirable to select a sequence of advertisements that interrelate, or that relate the route of the user to an advertised product or service. Therefore, potential routes may be identified (e.g., based on user history or nearby locations of interest), and for potential routes, advertisement opportunities may be identified where the user may have an at least partial attention availability (e.g., traffic signals and fuel stops.) Advertisements may be selected for presentation at the advertisement opportunities of respective potential routes. Additionally, advertisement opportunities may be offered to advertisers in an auction model, and advertisers may specify conditions of advertisements (e.g., competitive placement exclusive of competitors' advertisements, or combinatorial placement of several advertisements.)

    Abstract translation: 移动设备可以向用户呈现广告。 然而,如果在用户的注意不可用时(例如,在繁忙的十字路口操作车辆时),则在广告可能无效或危险的情况下可能是无效的或者危险的。还可能期望选择一系列的广告,这些广告相互关联或涉及路线 用户到广告的产品或服务。 因此,可以识别潜在路线(例如,基于用户历史或附近的兴趣位置),并且对于潜在的路线,可以识别广告机会,其中用户可能具有至少部分注意力可用性(例如,交通信号和燃料停止 可以选择广告来呈现各自潜在路线的广告机会。 此外,可以在拍卖模式中向广告商提供广告机会,并且广告商可以指定广告的条件(例如,排除竞争对手的广告的竞争性布置,或组合放置多个广告)。

Patent Agency Ranking