Abstract:
A front-end signal detector and a method for improving noise immunity of a capacitive touch sensor start counting a preset time to trigger an interrupt signal responsive to a positive or negative edge of a periodic noise, to break the path through which a demodulated signal comes into a low-pass filter, to prevent noise from accumulating in the low-pass filter, and consequently mitigate the influence of the noise on the detection signal generated by the front-end signal detector.
Abstract:
An overlay mark arrangement for reducing the asymmetric profile and an overlay shift during an integrated circuit manufacturing process is disclosed. In one embodiment, the overlay mark arrangement may comprise a first mark, a second mark and a stress releasing means. The first mark is used to indicate the position of a lower layer, the second mark is used to indicate the position of an upper layer; and the stress releasing means is used to release the film stress induced by the upper layer. Unlike the conventional overlay mark arrangements, which will have a severe overlay mark shift due to the film stress, the asymmetric overlay mark profile can be improved by using multiple trenches around the overlay marks according to certain embodiments of the invention disclosed herein.
Abstract:
A front-end signal detector and a method for improving noise immunity of a capacitive touch sensor start counting a preset time to trigger an interrupt signal responsive to a positive or negative edge of a periodic noise, to break the path through which a demodulated signal comes into a low-pass filter, to prevent noise from accumulating in the low-pass filter, and consequently mitigate the influence of the noise on the detection signal generated by the front-end signal detector.
Abstract:
The invention discloses a lens set adapted to a webcam. The webcam has a first focal length. The lens set according to the invention includes a first lens and a second lens. The first lens is used to refract a light to generate a refracted light substantially parallel to an optical axis of the first lens. The second lens is used to focus the refracted light and project it to the webcam. The combination of the lens set and the webcam has a second focal length smaller than the first focal length.
Abstract:
Wireless input devices for a computer are provided. A wireless input device includes a main body and a receiver detachably connected to a peripheral of the main body. The receiver receives a radio signal from the main body when the receiver is separated from the main body and connected to the computer.
Abstract:
A transconductance amplifier mirror circuit is connected to an electrode for sensing the capacitance of the electrode with reference to ground, or the capacitance between the electrode and another electrode. A voltage level change is produced on the electrode connected to the transconductance amplifier mirror circuit to cause the transconductance amplifier mirror circuit to supply charges to or drain charges from a charge calculation circuit. The charge amount variation is converted to a signal for calculating the sensed capacitance.
Abstract:
A sensing method and circuit for a capacitive touch panel sense the capacitance variation of a lateral capacitor formed at the intersection of two traces of the capacitive touch panel, to distinguish a real point from a ghost point. A sensing cycle includes two non-overlapping clock phases. In the first clock phase, the voltages across the lateral capacitor and across a sensing capacitor are set. In the second clock phase, the voltage at a first terminal of the lateral capacitor is changed, and a second terminal of the lateral capacitor is connected to a first terminal of the sensing capacitor, causing a voltage variation at a second terminal of the sensing capacitor. This voltage variation is used to determine whether the intersection is touched. The sensing method and circuit reflect the status of the lateral capacitor in real-time and prevent the location of the touch point from being misjudged.
Abstract:
An electronic stylus emits an excitation signal to apply to a trace of a capacitive touchpad module near a touch point when the electronic stylus touches the capacitive touchpad module, so as to change a waveform of a charging/discharging signal in the trace, and depending on the waveform variation, the capacitive touchpad module can identify the touch point.
Abstract:
A touch position detector includes a plurality of capacitance sensors, a negative capacitance compensation unit, an analog/digital converter and a micro processing unit. The negative capacitance compensation unit is utilized to compensate the capacitance of the capacitance sensor and get a capacitance change. The micro controller unit is utilized to detect the touch position according to the capacitance change. It is easy to get the touch position by using the touch position detector.