Abstract:
There is disclosed a method for producing a self-supporting ceramic body by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated into said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal in the metallic constituent.
Abstract:
Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron carbide material which may contain one or both of a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide material, boron-containing compound and/or carbon-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal, ratios of one ceramic to another and porosity.
Abstract:
A self-supporting ceramic body produced by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated into said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal in the metallic constituent.
Abstract:
The present invention relates to the formation of a macrocomposite body by spontaneously infiltrating a permeable mass of filler material or a preform with molten matrix metal and bonding the spontaneously infiltrated material to at least one second material such as a ceramic or ceramic containing body and/or a metal or metal containing body. Particularly, an infiltration enhancer and/or infiltration enhancer precursor and/or infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Moreover, prior to infiltration, the filler material or preform is placed into contact with at least a portion of a second material such that after infiltration of the filler material or preform, the infiltrated material is bonded to the second material, thereby forming a macrocomposite body.
Abstract:
Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron nitride material typically resulting in a body comprising a boron-containing compound, a nitrogen-containing compound and metal. The mass to be infiltrated may contain one or more inert fillers admixed with the boron nitride, to produce a composite by reactive infiltration, which composite comprises a matrix which embeds the filler material. The matrix, in a composite body containing filler material, comprises one or more of metal, a boron-containing compound and a nitrogen-containing compound. The relative amounts of reactants and process conditions may by altered or controlled to yield a body containing varying volume percents of ceramic, metal and/or porosity. The mass to be infiltrated can be contained within a refractory vessel having a venting means included therein.
Abstract:
Self-supporting bodies are produced by reactive infiltration of a parent metal into boron carbide typically resulting in a composite comprising a boron-containing compound and metal. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide, or at least one carbon donor material, to produce a composite by reactive infiltration, which composite comprises a matrix of metal and boron-containing compound embedding the filler. In one embodiment of the invention, a parent metal is reactively infiltrated into a mass comprising a boron carbide material mixed with a carbon-containing compound. In this embodiment, a self-supporting composite is formed typically comprising a boron-containing compound, a carbon-containing compound, and metal. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal and/or porosity. The mass to be infiltrated can be contained within a refractory vessel having a venting means included therein.
Abstract:
A ceramic-reinforced aluminum matrix composite is formed by contacting a molten aluminum-magnesium alloy with a permeable mass of ceramic material in the presence of a gas comprising from about 10 to 100% nitrogen, by volume, balance non-oxidizing gas, e.g., hydrogen or argon. Under these conditions, the molten alloy spontaneously infiltrates the ceramic mass under normal atmospheric pressures. A solid body of the alloy can be placed adjacent a permeable bedding of ceramic material, and brought to the molten state, preferably to at least about 700.degree. C., in order to form the aluminum matrix composite by infiltration. In addition to magnesium, auxiliary alloying elements may be employed with aluminum. The resulting composite products may contain a discontinuous aluminum nitride phase in the aluminum matrix and/or an aluminum nitride external surface layer.
Abstract:
Self-supporting bodies are produced by reactive infiltration of a parent metal with a boron source typically resulting in a composite comprising a parent metal boride and metal. The mass to be infiltrated may contain one or more inert fillers admixed with the boron source to produce a composite by reactive infiltration, which composite comprises a matrix of metal and parent metal boride embedding the filler. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal and/or porosity.
Abstract:
A ceramic-reinforced aluminum matrix composite is formed by contacting a molten aluminum-magnesium alloy with a permeable mass of ceramic material in the presence of a gas comprising from about 10 to 100% nitrogen, by volume, balance non-oxidizing gas, e.g., hydrogen or argon. Under these conditions, the molten alloy spontaneously infiltrates the ceramic mass under normal atmospheric pressures. A solid body of the alloy can be placed adjacent a permeable bedding of ceramic material, and brought to the molten state, preferably to at least about 700.degree. C., in order to form the aluminum matrix composite by infiltration. In addition to magnesium, auxiliary alloying elements may be employed with aluminum. The resulting composite products may contain a discontinuous aluminum nitride phase in the aluminum matrix and/or an aluminum nitride external surface layer.
Abstract:
Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron nitride material typically resulting in a body comprising a boron-containing compound, a nitrogen-containing compound and metal. The mass to be infiltrated may contain one or more inert fillers admixed with the boron nitride, to produce a composite by reactive infiltration, which composite comprises a matrix which embeds the filler material. The matrix, in a composite body containing filler material, comprises one or more of metal, a boron-containing compound and a nitrogen-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal and/or porosity. The mass to be infiltrated can be contained within a refractory vessel having a venting means included therein.