Abstract:
At least one chemical entity chosen from compounds of Formula 2 and pharmaceutically acceptable salts, solvates, chelates, non-covalent complexes, prodrugs, and mixtures thereof is described herein. Pharmaceutical compositions comprising at least one chemical entity of the invention, together with at least one pharmaceutically acceptable vehicle chosen from carriers adjuvants, and excipients, are described. Methods of treating patients suffering from certain diseases responsive to inhibition of Btk activity and/or B-cell activity are described. Methods for determining the presence of Btk in a sample are described.
Abstract:
Certain chemical entities chosen from compounds of Formula 1 and pharmaceutically acceptable salts, solvates, chelates, non-covalent complexes, and prodrugs thereof, are provided herein. Pharmaceutical compositions comprising at least one chemical entity and one or more pharmaceutically acceptable vehicles chosen from carriers, adjuvants, and excipients, are also provided herein. Methods of treating patients suffering from certain diseases and disorders responsive to angiogenic kinase modulation, which comprise administering to such patients an amount of at least one chemical entity effective to reduce signs or symptoms of the disease or disorder are disclosed. These diseases include cancer, including breast neoplasia, endometrial cancer, colon cancer, and neck squamous cell carcinoma. Methods of treatment include administering at least one chemical entity as a single active agent or administering such at least one chemical entity in combination with one or more other therapeutic agents. A method for determining the presence or absence of an angiogenic kinase in a sample comprising contacting the sample with at least one chemical entity under conditions that permit detection of activity of the angiogenic kinase, detecting a level of the activity of the angiogenic kinase, and therefrom determining the presence or absence of the angiogenic kinase in the sample.
Abstract:
Certain chemical entities chosen from compounds of Formula 1 and pharmaceutically acceptable salts, solvates, crystal forms, chelates, non-covalent complexes, prodrugs, and mixtures thereof, are provided herein. Pharmaceutical compositions comprising at least one chemical entity and one or more pharmaceutically acceptable vehicle chosen from carriers, adjuvants, and excipients, are also provided herein. Methods of treating patients suffering from certain diseases and disorders responsive to angiogenic kinase modulation, which comprise administering to such patients an amount of at least one chemical entity effective to reduce signs or symptoms of the disease or disorder are disclosed. These diseases include cancer, including breast neoplasia, endometrial cancer, colon cancer, and neck squamous cell carcinoma. Methods of treatment include administering at least one chemical entity as a single active agent or administering such at least one chemical entity in combination with one or more other therapeutic agents. A method for determining the presence or absence of an angiogenic kinase in a sample comprising contacting the sample with at least one chemical entity under conditions that permit detection of activity of the angiogenic kinase, detecting a level of the activity of the angiogenic kinase, and therefrom determining the presence or absence of the angiogenic kinase in the sample.
Abstract:
This invention relates to a compound of Formula I (I) and its use in treating hyper-proliferative disorders and diseases associated with angiogenesis.
Abstract:
Matrix metalloprotease inhibiting compounds, pharmaceutical compositions thereof and a method of disease treatment using such compounds are presented. The compounds of the invention have the generalized formulas: wherein r is 0-2, T is selected from and R40 is a mono- or bi-heterocyclic structure. These compounds are useful for inhibiting matrix metalloproteases and, therefore, combating conditions to which MMP's contribute, such as osteoarthritis, rheumatoid arthritis, septic arthritis, periodontal disease, comeal ulceration, proteinuria, aneurysmal aortic disease, dystrophobic epidermolysis, bullosa, conditions leading to inflammatory responses, osteopenias mediated by MMP activity, tempero mandibularjoint disease, demyelating diseases of the nervous system, tumor metastasis or degenerative cartilage loss following traumatic joint injury, and coronary thrombosis from athrosclerotic plaque rupture. The present invention also provides pharmaceutical compositions and methods for treating such conditions.