Abstract:
A receiver for a telecommunications system in which a data signal is transmitted using a closed loop transmit diversity system and a pilot signal is transmitted using a space time transmit diversity system, the receiver comprising an equalizer for equalising a signal received by the receiver, wherein the equalizer is configured to produce an equalized signal in which effects caused by a propagation channel through which the data signal was transmitted are alleviated, the receiver further comprising a processor for processing the equalized received signal to recover the pilot signal.
Abstract:
The present invention provides a single modulator capable of transmitting an input according to a first and a second modulation technique. The first modulation technique represents changes in the input using a first set of carrier waveform parameters, such as phase variations, whereas the second modulation technique represents changes in the input using a second set of carrier waveform parameters, such as alternative phase variations. The present invention performs both modulation techniques by expressing the 10 second set of carrier waveform parameters as a subset of the first set of carrier waveform parameters. In a preferred embodiment, the first and second modulation techniques comprise the π/2-offset 2PSK (a good approximation of differential GMSK) and 3π/8-offset 8PSK (also known as EDGE) modulation techniques.
Abstract:
The present invention provides a single modulator capable of transmitting an input according to a first and a second modulation technique. The first modulation technique represents changes in the input using a first set of carrier waveform parameters, such as phase variations, whereas the second modulation technique represents changes in the input using a second set of carrier waveform parameters, such as alternative phase variations. The present invention performs both modulation techniques by expressing the 10 second set of carrier waveform parameters as a subset of the first set of carrier waveform parameters. In a preferred embodiment, the first and second modulation techniques comprise the π/2-offset 2PSK (a good approximation of differential GMSK) and 3π/8-offset 8PSK (also known as EDGE) modulation techniques.
Abstract:
A first estimate is made of the impulse response of the channel considered as a whole, then this first estimate is corrected independently of the information transmitted for obtaining a corrected final estimate of the impulse response of the channel. This is done by taking account of the fact that the impulse response of the sender and the impulse response of the receiver are known.
Abstract:
A receiver for a telecommunications system in which a data signal is transmitted using a closed loop transmit diversity system and a pilot signal is transmitted using a space time transmit diversity system, the receiver comprising an equalizer for equalising a signal received by the receiver, wherein the equalizer is configured to produce an equalized signal in which effects caused by a propagation channel through which the data signal was transmitted are alleviated, the receiver further comprising a processor for processing the equalized received signal to recover the pilot signal.
Abstract:
A receiver (10) for a telecommunications system, the receiver (10) comprising a channel impulse response estimator (12) for producing an initial estimated channel impulse response of an overall multipath channel of the telecommunications system and a processing unit (16) for calculating, from the initial estimated channel impulse response, an estimate of the gain of each component of a propagation channel impulse response represented by the initial estimated channel impulse response.
Abstract:
A receiver (10) for a telecommunications system, the receiver (10) comprising a channel impulse response estimator (12) for producing an initial estimated channel impulse response of an overall multipath channel of the telecommunications system and a processing unit (16) for calculating, from the initial estimated channel impulse response, an estimate of the gain of each component of a propagation channel impulse response represented by the initial estimated channel impulse response.
Abstract:
Receiving a Wi-Fi radio signal using a Bluetooth receiver architecture. Also, adapting a Wi-Fi receiver architecture to constrain a received radio signal to less than the bandwidth of a conveyed Wi-Fi signal for subsequent processing purposes.
Abstract:
Receiving a Wi-Fi radio signal using a Bluetooth receiver architecture. Also, adapting a Wi-Fi receiver architecture to constrain a received radio signal to less than the bandwidth of a conveyed Wi-Fi signal for subsequent processing purposes.
Abstract:
Estimating the speed of movement of a mobile terminal includes estimating the impulse response of the transmission channel at a given instant, and estimating the time derivative of the estimated impulse response. Estimating the speed also includes determining of a ratio of the energy of the estimated impulse response to the energy of the estimated time derivative.