Abstract:
A method of fabricating an invertedly poled domain structure having alternating sections of opposite electric polarities, from a ferroelectric crystal wafer (1) having two opposite polar surfaces, comprises patterning at least one of the two polar surfaces of the wafer to comprise a plurality of alternating discrete regions, of which first regions are adapted for and second regions are protected from the direct application thereto of an electric contact; applying to both polar surfaces of the wafer electrically conducting electrodes (10 and 11) so that the first regions are in direct contact with the electrodes and the second regions are protected from such a contact; and applying to the electrodes an electrical field (20) of the intensity E. The electrical field is applied to the wafer at a working temperature by heater/cooler (15).
Abstract:
An optical device including an active core layer of silica glass doped with ions which serve as optical emitters, the active core layer being on a silica glass substrate and having a layer thickness of at least 5 μm, and wherein the layer is sintered at a temperature range of 1500-1600 C. and subsequently heat treated by a laser.
Abstract:
An optical device including an active core layer of silica glass doped with ions which serve as optical emitters, the active core layer being on a silica glass substrate and having a layer thickness of at least 5 μm, and wherein the layer is sintered at a temperature range of 1500-1600 C and subsequently heat treated by a laser.