Abstract:
Logging events associated with accessing an area includes recording an event associated with accessing the area to provide an event recording and authenticating at least the event recording to provide an authenticated recording. Recording an event may include recording a time of the event. Recording an event may include recording a type of event. The event may be an attempt to access the area. Recording an event may include recording credentials/proofs used in connection with the attempt to access the area. Recording an event may include recording a result of the attempt. Recording an event may include recording the existence of data other than the credentials/proofs indicating that access should be denied. Recording an event may include recording additional data related to the area. Authenticating the recording may include digitally signing the recording.
Abstract:
A system and method are disclosed for controlling physical access through a digital certificate validation process that works with standard certificate formats and that enables a certifying authority (CA) to prove the validity status of each certificate C at any time interval (e.g., every day, hour, or minute) starting with C's issue date, D1. C's time granularity may be specified within the certificate itself, unless it is the same for all certificates. For example, all certificates may have a one-day granularity with each certificate expires 365 days after issuance. Given certain initial inputs provided by the CA, a one-way hash function is utilized to compute values of a specified byte size that are included on the digital certificate and to compute other values that are kept secret and used in the validation process.
Abstract:
Issuing and disseminating a data about a credential includes having an entity issue authenticated data indicating that the credential has been revoked, causing the authenticated data to be stored in a first card of a first user, utilizing the first card for transferring the authenticated data to a first door, having the first door store information about the authenticated data, and having the first door rely on information about the authenticated data to deny access to the credential. The authenticated data may be authenticated by a digital signature and the first door may verify the digital signature. The digital signature may be a public-key digital signature. The public key for the digital signature may be associated with the credential. The digital signature may be a private-key digital signature. The credential and the first card may both belong to the first user. The credential may be stored in a second card different from the first card, and the first door may rely on information about the authenticated data by retrieving such information from storage. The authenticated data may be first stored in at least one other card different from the first card and the authenticated data may be transferred from the at least one other card to the first card. The authenticated data may be transferred from the at least one other card to the first card by first being transferred to at least one other door different from the first door.
Abstract:
Determining whether to remotely authorize an action on behalf of a requester includes having the requester provide a privacy token, remotely obtaining data from the privacy token, and authorizing the action if the data from the privacy token verifies that the requester is authorized to take the action. The action may include issuing a credit card for the requester. The privacy token may be a smart card. The data may be digitally signed. Determining whether to remotely authorize an action on behalf of a requester may also include authorizing the action if the requester had previously indicated a desire not to require presentation of the privacy token. The action may be authorized only if the data from the privacy token verifies the identity of the requester.
Abstract:
A system and method are disclosed for controlling physical access through a digital certificate validation process that works with standard certificate formats and that enables a certifying authority (CA) to prove the validity status of each certificate C at any time interval (e.g., every day, hour, or minute) starting with C's issue date, D1. C's time granularity may be specified within the certificate itself, unless it is the same for all certificates. For example, all certificates may have a one-day granularity with each certificate expires 365 days after issuance. Given certain initial inputs provided by the CA, a one-way hash function is utilized to compute values of a specified byte size that are included on the digital certificate and to compute other values that are kept secret and used in the validation process.
Abstract:
Facilitating a transaction between a first party and a second party includes, prior to initiating the transaction, one of the parties obtaining an artificially pre-computed OCSP response about a specific digital certificate, where the artificially pre-computed OCSP response is generated by an entity other than the first party and the second party, one of the parties initiating the transaction, in connection with the transaction, the first party providing the specific digital certificate to the second party, and the second party verifying the specific digital certificate using the artificially pre-computed OCSP response. The second party may obtain the artificially pre-computed OCSP response prior to the transaction being initiated. The second party may cache the artificially pre-computed OCSP response for future transactions. The first party may obtain the artificially pre-computed OCSP response prior to the transaction being initiated. The first party may cache the artificially pre-computed OCSP response for future transactions.
Abstract:
A system and method are disclosed for controlling physical access through a digital certificate validation process that works with standard certificate formats and that enables a certifying authority (CA) to prove the validity status of each certificate C at any time interval (e.g., every day, hour, or minute) starting with C's issue date, D1. C's time granularity may be specified within the certificate itself, unless it is the same for all certificates. For example, all certificates may have a one-day granularity with each certificate expires 365 days after issuance. Given certain initial inputs provided by the CA, a one-way hash function is utilized to compute values of a specified byte size that are included on the digital certificate and to compute other values that are kept secret and used in the validation process.
Abstract:
Logging events associated with accessing an area includes recording an event associated with accessing the area to provide an event recording and authenticating at least the event recording to provide an authenticated recording. Recording an event may include recording a time of the event. Recording an event may include recording a type of event. The event may be an attempt to access the area. Recording an event may include recording credentials/proofs used in connection with the attempt to access the area. Recording an event may include recording a result of the attempt. Recording an event may include recording the existence of data other than the credentials/proofs indicating that access should be denied. Recording an event may include recording additional data related to the area. Authenticating the recording may include digitally signing the recording.
Abstract:
A cost-effective system that provides for the efficient protection of transmitted non-public attribute information may be used, for example, to control access to a secure area. Encryption of the attribute information may be performed using symmetric encryption techniques, such as XOR and/or stream cipher encryption. A centralized database that stores and transmits the encrypted attribute information may generate the encryption/decryption key based on selected information bytes, for example, as taken from a card inserted into a handheld device used at the secure area. The selected information to generate the encryption key stream may be varied on a periodic basis by the centralized database. Information as to which selected bytes are to be used for a particular access authorization request may be transmitted to the handheld unit or may be input through action of a user of the handheld unit, for example by entry of a PIN code.
Abstract:
Controlling access includes providing a barrier to access that includes a controller that selectively allows access, at least one administration entity generating credentials/proofs, wherein no valid proofs are determinable given only the credentials and values for expired proofs, the controller receiving the credentials/proofs, the controller determining if access is presently authorized, and, if access is presently authorized, the controller allowing access. The credentials/proofs may be in one part or may be in separate parts. There may be a first administration entity that generates the credentials and other administration entities that generate proofs. The first administration entity may also generate proofs or the first administration entity may not generate proofs. The credentials may correspond to a digital certificate that includes a final value that is a result of applying a one way function to a first one of the proofs.