Abstract:
The invention provides gas purification methods and systems for the recovery and liquefaction of low boiling point organic and inorganic gases, such as methane, propane, CO2, NH3, and chlorofluorocarbons. Many such gases are in the effluent gas of industrial processes and the invention can increase the sustainability and economics of such industrial processes. In a preferred method of the invention, low boiling point gases are adsorbed with a heated activated carbon fiber material maintained at an adsorption temperature during an adsorption cycle. During a low boiling point desorption cycle the activated carbon fiber is heated to a desorption temperature to create a desorption gas stream with concentrated low boiling point gases. The desorption gas stream is actively compressed and/or cooled to condense and liquefy the low boiling point gases, which can then be collected, stored, re-used, sold, etc. Systems of the invention include an active condensation loop that actively cools and/or compresses a desorption gas stream from said vessel to liquefy low boiling point gases.
Abstract:
Power distribution busses and methods are disclosed that provide flexible protection and alarming capabilities. Various embodiments provide interchangeability of fuses and circuit breakers within the same power distribution bus configuration. These various embodiments also provide discrete alarming for fused lines, discrete alarming for lines with circuit breakers, combined alarming for lines having mixed forms of protection, and/or selectable alarming such as combined versus discrete in relation to employing all fused lines, employing all circuit breaker protected lines, or employing mixed line protection.
Abstract:
A coaxial cable splitter including an integral body with a first cable connection, a second cable connection and a third cable connection, each defining an axis. The second cable connection is a crimp sleeve, the first cable connection is a coaxial connector, and the axes are generally parallel to each other. The third cable connection is a coaxial cable connector and the axis is at an angle to the axes of the first and second cable connections. The first and third cable connections each include a center conductor which are electrically linked. The first and third cable connections each include an outer shell positioned about the center conductor which are electrically linked. A method of assembling a coaxial cable splitter with an integral body.
Abstract:
Power distribution busses and methods are disclosed that provide flexible protection and alarming capabilities. Various embodiments provide interchangeability of fuses and circuit breakers within the same power distribution bus configuration. These various embodiments also provide discrete alarming for fused lines, discrete alarming for lines with circuit breakers, combined alarming for lines having mixed forms of protection, and/or selectable alarming such as combined versus discrete in relation to employing all fused lines, employing all circuit breaker protected lines, or employing mixed line protection.
Abstract:
A numerically-controlled robotic manipulator arm mounted to a sod harvester comprises two segments pivotally coupled together. One segment is rotatably coupled to a fixed base on the harvester while the second segment carries a pick-up head which can turn with respect to the segment. The pick-up head is capable of picking up, holding, and releasing sod rolls. The arm is programmable so that a variety of configurations of stacked sod rolls can be achieved.
Abstract:
A coaxial cable signal splitter with first, second and third connector ends, each adapted to mate with a coaxial cable connector. The first connector end is integral with a splitter body. The second and third connector ends are connected to the body by a pair of coaxial cables. Each connector end includes a center conductor mounted within a coaxially arranged conductive outer shell conductor. The splitter body includes the first connector end and an opposing arrangement for connecting the pair of cables to the body. The splitter body includes a transverse opening between the first connector end and the cable mounting arrangement, the opening extending through the body and having opposing open sides. Within the opening, the center conductor of the first connector end is electrically connected with the center conductors of the second and third connector ends. The center conductor of the first connector end extends within the conductive outer shell of the first connector end and within the opening of the body. The center conductor of each of the pair of coaxial cables extend within the opening of the body and are electrically connected to the center conductor of the first connector end, and each of the conductive outer shell connectors electrically connected to the other conductive outer shells.
Abstract:
A power distribution panel with a chassis defining an interior with a first opening and a second opposing opening. The panel including a module with a bottom, a first face and a second face, and including a power input terminal, a plurality of power output terminals, and an electrical circuit connecting each power output terminal to the power input terminal, each circuit including a circuit protection device. The power input terminal, the power output terminals and the circuit protection devices are mounted to one of the first or second faces. The module is configured to be received through the first opening and removably mounted within the interior so that the power input terminal, the power output terminals and the circuit protection devices are accessible through one of the first and second openings when the module is mounted within the chassis. A module including power distribution components and circuitry adapted to be removably mounted within a power distribution panel chassis.
Abstract:
The invention provides gas purification methods and systems for the recovery and liquefaction of low boiling point organic and inorganic gases, such as methane, propane, CO2, NH3, and chlorofluorocarbons. Many such gases are in the effluent gas of industrial processes and the invention can increase the sustainability and economics of such industrial processes. In a preferred method of the invention, low boiling point gases are adsorbed with a heated activated carbon fiber material maintained at an adsorption temperature during an adsorption cycle. During a low boiling point desorption cycle the activated carbon fiber is heated to a desorption temperature to create a desorption gas stream with concentrated low boiling point gases. The desorption gas stream is actively compressed and/or cooled to condense and liquefy the low boiling point gases, which can then be collected, stored, re-used, sold, etc. Systems of the invention include an active condensation loop that actively cools and/or compresses a desorption gas stream from said vessel to liquefy low boiling point gases.
Abstract:
A modular power distribution system comprises a chassis and a backplane including a power input, and a plurality of module connection locations. A plurality of modules are mounted in the chassis, each module mounted to one of the module connection locations. Each module includes: (i) a circuit protection device; and (ii) a power output connection location. Bus bars connect front power inputs to the backplane.