摘要:
A wireless sensor network for wirelessly monitoring a medical subject includes a plurality of sensor nodes (22, 24, 26, 122, 124, 126). Each sensor node includes a wireless transceiver (46) for sending and receiving wireless messages, a sensor (40, 42, 130, 132, 140, 142) monitoring a characteristic of the medical subject, and a processor (50). The processor is programmed to at least perform an authentication method including: (i) acquiring sensor data via the sensor for a predetermined time (76) responsive to receiving a wireless trigger message; (ii) storing an association code (60, 150, 152, 160, 162) computed from the acquired sensor data; and (iii) authenticating a subsequently received wireless message containing an association code tag by comparing the association code tag with the stored association code. The processor further attaches the stored association code as the association code tag in messages sent to other sensors.
摘要:
A system for securely synchronizing medical devices and providing message integrity with timeliness and uniqueness (10) includes a plurality of medical wireless devices (121, 122, . . . , 12n). The medical devices (121, 122, . . . , 12n) communicate wirelessly with one another. Each message (M) includes a data portion and a timestamp. Each medical device (121, 122, . . . , 12n) includes a sensor (14) which is attached to a patient to monitor a common vital sign. The medical devices (121, 122, . . . , 12n) are synchronized when the sensor (16) of each medical device detects a peak of the vital sign function. At this moment, internal clocks of each medical device (121, 122, . . . 12n) are zeroed and each internal timer starts counting time. Thus, the medical devices are loosely synchronized at approximately the same time. Each generated message (M) is timestamped with a sent time (TSEND) generated by a time count. The generated time stamp (TSEND) of the message (M) is validated against a receive time (TRECEIVE) of the receiving medical device internal clock count. If the message (M) arrives out of the prespecified acceptance window, the message (M) is rejected by the receiving medical device
摘要:
A short-range ad-hoc network (20) of wireless medical devices (22, 24, 26, 28) intercommunicating by a short-range wireless technology are synchronized with official date and time information provided by a time server (70) residing in a medical infrastructure network (32). A time-control device (28, 66) synchronizes its clock (60′, 60″) with the time server. A selected wireless medical device (22) of the wireless shortrange network (20) wirelessly connects with the time control device using the short-range wireless communication protocol and synchronizes a clock (60) of the selected wireless medical device with the clock of the time-control device. The latter wireless connecting and the synchronizing is repeated to synchronize the clocks of each wireless medical device of the short-range network.
摘要:
A wireless sensor network for wirelessly monitoring a medical subject includes a plurality of sensor nodes (22, 24, 26, 122, 124, 126). Each sensor node includes a wireless transceiver (46) for sending and receiving wireless messages, a sensor (40, 42, 130, 132, 140, 142) monitoring a characteristic of the medical subject, and a processor (50). The processor is programmed to at least perform an authentication method including: (i) acquiring sensor data via the sensor for a predetermined time (76) responsive to receiving a wireless trigger message; (ii) storing an association code (60, 150, 152, 160, 162) computed from the acquired sensor data; and (iii) authenticating a subsequently received wireless message containing an association code tag by comparing the association code tag with the stored association code. The processor further attaches the stored association code as the association code tag in messages sent to other sensors.
摘要:
A user interface (20, 20′, 20″, 20″′ for providing authenticated access to medical equipment, data, or records includes a dynamic display (30, 30″′) that selectively shows user options. A touchscreen overlay (40) aligned with the dynamic display identifies a touch location on, in, or adjacent the dynamic display. A fingerprint reader (50, 50′, 50″, 50″′ is triggered by the touchscreen overlay and acquires a fingerprint at the touch location. User authentication, access control and logging are performed based on identifying and authenticating the fingerprint.
摘要:
A user interface (20, 20′, 20″, 20′″ for providing authenticated access to medical equipment, data, or records includes a dynamic display (30, 30′″) that selectively shows user options. A touchscreen overlay (40) aligned with the dynamic display identifies a touch location on, in, or adjacent the dynamic display. A fingerprint reader (50, 50′, 50″, 50′″ is triggered by the touchscreen overlay and acquires a fingerprint at the touch location. User authentication, access control and logging are performed based on identifying and authenticating the fingerprint.
摘要:
The invention relates to a wireless network comprising at least two terminals which each contain a UPnP (Universal Plug and Play) software component and a UPnP controller software component. According to the invention, the UPnP controller software component of a terminal forwards specific messages from the associated UPnP software component to subordinate software components only following a change in the network topology.
摘要:
A medical ad hoc wireless network (10) is deployed in a healthcare medical facility surrounding individual patients and including wireless nodes (A, B, . . . , Z). Before deployment, each node (A, B, . . . , Z) is pre-initialized with a public key certificate (22) and offers a trust and symmetric key distribution service (32). In joining the ad hoc network (10), a node (B) authenticates and registers to one randomly self-chosen node (A) by using certified public keys (20). Such node (A) becomes Trusted Portal (TPA) of the node (B). The node (B) dynamically registers to a new self-chosen TP node when its old TP node leaves the ad hoc network (10). The network (10) supports symmetric key authentication between nodes registered to the same TP node. Additionally, it supports symmetric key authentication between nodes registered to different TP nodes.
摘要翻译:医疗自组织无线网络(10)部署在围绕个体患者并且包括无线节点(A,B,...,Z))的医疗保健医疗设施中。 在部署之前,每个节点(A,B,...,Z)都用公钥证书(22)预初始化,并提供信任和对称密钥分发服务(32)。 在加入自组织网络(10)中,节点(B)通过使用认证的公钥(20)来认证并向一个随机自选节点(A)注册。 这样的节点(A)成为节点(B)的可信门户(TP SUB> A SUB>)。 当节点(B)的旧TP节点离开自组织网络(10)时,动态地向新的自选TP节点注册。 网络(10)支持对同一TP节点注册的节点之间的对称密钥认证。 另外,它支持注册到不同TP节点的节点之间的对称密钥认证。
摘要:
A system for securely synchronizing medical devices and providing message integrity with timeliness and uniqueness (10) includes a plurality of medical wireless devices (121, 122, . . . , 12n). The medical devices (121, 122, . . . , 12n) communicate wirelessly with one another. Each message (M) includes a data portion and a timestamp. Each medical device (121, 122, . . . , 12n) includes a sensor (14) which is attached to a patient to monitor a common vital sign. The medical devices (121, 122, . . . , 12n) are synchronized when the sensor (16) of each medical device detects a peak of the vital sign function. At this moment, internal clocks of each medical device (121, 122, . . . , 12n) are zeroed and each internal timer starts counting time. Thus, the medical devices are loosely synchronized at approximately the same time. Each generated message (M) is timestamped with a send time (TSEND) generated by a time count. The generated timestamp (TSEND) of the message (M) is validated against a receive time (TRECEIVE) of the receiving medical device internal clock count. If the message (M) arrives out of the prespecified acceptance window, the message (M) is rejected by the receiving medical device.
摘要:
A medical ad hoc wireless network (10) is deployed in a healthcare medical facility surrounding individual patients and including wireless nodes (A, B, . . . , Z). Before deployment, each node (A, B, . . . , Z) is pre-initialized with a public key certificate (22) and offers a trust and symmetric key distribution service (32). In joining the ad hoc network (10), a node (B) authenticates and registers to one randomly self-chosen node (A) by using certified public keys (20). Such node (A) becomes Trusted Portal (TPA) of the node (B). The node (B) dynamically registers to a new self-chosen TP node when its old TP node leaves the ad hoc network (10). The network (10) supports symmetric key authentication between nodes registered to the same TP node. Additionally, it supports symmetric key authentication between nodes registered to different TP nodes.