Abstract:
A rail system for supporting equipment in a rack is disclosed. The rail system may include: a first support rail assembly extending between a pair of vertical columns; a second support rail assembly extending between a different pair of vertical columns. Each support rail assembly may include: a support rail having opposite ends; aligners configured to align the opposite ends of the support rail with apertures of vertical columns; and mounting plates configured to removably secure the aligners to the opposite ends of the support rail. At least one mounting plate may be further configured to define at least one receiving portion for receiving a fastener for securing an equipment supportable in the rack.
Abstract:
A system of keying implementation for swapping paired devices is provided. The system includes a controller module having a first keying member, a power supply unit having a second keying member, and a chassis having a plurality of receiving slots for receiving the controller module and the power supply unit. When the controller module and the power supply unit are a matched pair and when the controller module and the power supply unit are fully inserted, next to each other, into the plurality of receiving slots, the first keying member and the second keying member do not interfere with each other so that the power supply unit may supply power to the controller module.
Abstract:
A hard disk drive system includes a plurality of hard disk drive carriers and a hard disk drive chassis. Each of the plurality of hard disk drive carriers has a body and an ejector rotatably connected to the body. The ejector includes a first alignment member on a first side of the ejector and a second alignment member on a second side of the ejector. The second side of the ejector is opposite the first side of the ejector. The hard disk drive chassis includes a plurality of receiving slots for receiving the plurality of hard disk drive carriers. Two of the plurality of hard disk drive carriers may be fully inserted, next to each other, into the plurality of receiving slots.
Abstract:
The present invention is an apparatus for supporting the dense integration of a plurality of multi-drive modules. A chassis assembly of the present invention may house a plurality of multi-drive modules whereby each multi-drive module may house multiple drives. Each multi-drive module may be easily removed from the chassis for reduced serviceability time. Each drive may be housed within a carrier assembly, the carrier assembly being easily removed from the multi-drive module of the present invention. Advantageously, a dense integration of drives may be achieved while providing proper ventilation and vibration dampening.
Abstract:
A computer chassis handle may comprise: (a) at least one handle portion rotatable about a first axis of rotation; and (b) at least one support portion rotatable about a second axis of rotation.A computer chassis may comprise: (a) a computer chassis body; and (b) at least one rotatable handle.
Abstract:
An computer chassis handle may comprise: (a) at least one handle portion rotatable about a first axis of rotation; and (b) at least one support portion rotatable about a second axis of rotation.An computer chassis may comprise: (a) a computer chassis body; and (b) at least one rotatable handle.
Abstract:
A device for installing and removing a removable computer component, such as a data storage drive or computer card, into or out of a computer housing. The device features a drive sled to which the data storage drive is mounted. A stationary carrier tray is secured to the computer housing. Interlocking angled tracks on the drive sled and the carrier tray secure the two structures together. To promote easy coupling of the drive's electrical interface connectors, the front end of the drive sled has a floating guide plate with forward-projecting locating pins, which pins are used to align the electrical connectors held by the floating guide plate. A rack and pinion mechanism is provided. The rack is disposed on the top of the carrier tray while the pinion is located on the underside of the drive sled. As the drive sled slides onto the carrier tray, the lever-actuated pinion gear engages the rack and consequently displaces the drive sled relative to the stationary carrier tray. A torsion spring may be used to bias the pinion. The carrier tray also features a raised wedge that latches the lever at one extreme position when the drive sled is in its forward-most position to lock the data storage drive inside the computer housing.
Abstract:
The present invention is a computing appliance chassis assembly which may support an integration of a plurality of removable modules, including fan modules, power supplies, and a controller module. The computing appliance chassis assembly may also include detachable handles which may allow transport of the computing appliance chassis assembly. A controller chassis may be installed within the computing appliance chassis assembly. A controller chassis assembly may house a controller module and may include rotatable side panels which allow easier access to the components of the controller module. A fan chassis assembly may also be installed within the computing appliance chassis and may house a fan module.