摘要:
Session initiation protocol (SIP) control traffic routing decisions, such as rapid failure detection and recovery mechanisms, are based on detection of events and/or conditions that may result in suboptimal performance. The disclosed approach ensures that the SIP traffic is routed or rerouted on an optimal basis. Sample inputs to the SIP routing decisions, include integration with BFD, system metrics and other criteria to determine network and systems conditions, for dynamic decisions on where to optimally route SIP traffic. Examples leverage the B2BUA model, which maintains call state and participates in call processing, however, the examples introduce an improved routing model that is able to not only reroute SIP traffic based on failures but also upon the detection of other suboptimal conditions, e.g. excessive cost. The exemplary techniques provide significant savings by ensuring SIP peering decisions are automatically performed considering costs of peering arrangements, congestion and/or other criteria.
摘要:
Session initiation protocol (SIP) control traffic routing decisions, such as rapid failure detection and recovery mechanisms, are based on detection of events and/or conditions that may result in suboptimal performance. The disclosed approach ensures that the SIP traffic is routed or rerouted on an optimal basis. Sample inputs to the SIP routing decisions, include integration with BFD, system metrics and other criteria to determine network and systems conditions, for dynamic decisions on where to optimally route SIP traffic. Examples leverage the B2BUA model, which maintains call state and participates in call processing, however, the examples introduce an improved routing model that is able to not only reroute SIP traffic based on failures but also upon the detection of other suboptimal conditions, e.g. excessive cost. The exemplary techniques provide significant savings by ensuring SIP peering decisions are automatically performed considering costs of peering arrangements, congestion and/or other criteria.
摘要:
Packet communication networks for transmission to wireless subscriber devices utilize both wireline and wireless packet routing components. The routing elements of these two different types often implement different packet scheduling algorithms, typically a form of Weighted Fair Queuing (WFQ) in the wireline portion of the network and Proportional Fairness (PF) queuing in the wireless domain. To improve resource allocation and thus end to end quality of service for time sensitive communications, such as integrated multimedia services, the present disclosure suggests adding the notion of slack time into either one or both of the packet scheduling algorithms. By modifying one or more of these algorithms, e.g. to reorder or shuffle packets based on slack times, global optimal resource allocations are possible, at least in certain cases.