Abstract:
Using various embodiments, methods and systems for secure Bluetooth Low Energy communications, in an unconnected state, are described herein. In one embodiment, conventional BLE transmitting device data can be supplemented with authentication information, including a message authentication field which enables receivers to determine if the received beacon/transmitted BLE peripheral data is genuine. In another embodiment, the authentication data can also include a time varying value field in order to prevent unintentional acceptance of transmitting device data from unauthorized replicated BLE peripherals. In one embodiment, the transmitting device computes an authentication tag using at least a secret key known to the receiving device and transmits the authentication tag to the receiving device. The receiving device can compute an authentication value using the secret key and other transmitting device information and determine if the transmitting device data is genuine by comparing the computed authentication value and the received the authentication tag.
Abstract:
Using various embodiments, methods and systems for secure Bluetooth Low Energy communications, in an unconnected state, are described herein. In one embodiment, conventional BLE transmitting device data can be supplemented with authentication information, including a message authentication field which enables receivers to determine if the received beacon/transmitted BLE peripheral data is genuine. In another embodiment, the authentication data can also include a time varying value field in order to prevent unintentional acceptance of transmitting device data from unauthorized replicated BLE peripherals. In one embodiment, the transmitting device computes an authentication tag using at least a secret key known to the receiving device and transmits the authentication tag to the receiving device. The receiving device can compute an authentication value using the secret key and other transmitting device information and determine if the transmitting device data is genuine by comparing the computed authentication value and the received the authentication tag.
Abstract:
A system and method for error tolerant content delivery is provided. A data file for transmission including metadata and data is received. The metadata includes mandatory portions and optional portions. The file is parsed into packets and transmitted as a data stream to a plurality of receiver devices, which may look for transmission errors in the control data of the data stream. Data streams comprising errors are discarded; otherwise, the receiver device converts the data stream into the native file format and stores it. The system may bifurcate each data file into the common encrypted content and the uniquely encrypted portion. The commonly encrypted portion of the file may be transmitted to a plurality of receiver devices using a multicast transmission medium, and the relatively small uniquely encrypted portions may be transmitted using a unicast method to each receiver individually. The receiver device may then reconstitute the DRM data file.
Abstract:
A method and system are provided for the transmission and reception of a composite radio-frequency (RF) signal including a supplemental signal, preferably representing encoded digital information, together with an analog signal which represents monophonic analog audio in the AM-band. The analog monophonic component of the composite signal may be received by conventional AM-band audio receivers. In certain embodiments, the analog signal is a single-sideband large-carrier or vestigial-sideband large-carrier signal, and the composite RF signal includes a digital signal whose spectrum is substantially confined in one inner sideband. In other embodiments, a baseband digital signal is combined with an analog monophonic audio signal and transmitted in upper inner and lower inner sidebands using nonlinear compatible quadrature amplitude modulation (NC-QAM). Additional digital signals' spectrum occupies the lower outer and upper outer sidebands. In certain embodiments, for each transmitted codeword, part of the codeword information is replicated by modulated signals in both the upper outer and lower outer sidebands, preferably with diversity delay between the outer sideband signals.
Abstract:
A method and system are provided for the transmission and reception of a composite radio-frequency (RF) signal including a supplemental signal, preferably representing encoded digital information, together with an analog signal which represents monophonic analog audio in the AM-band. The analog monophonic component of the composite signal may be received by conventional AM-band audio receivers. In certain embodiments, the analog signal is a single-sideband large-carrier or vestigial-sideband large-carrier signal, and the composite RF signal includes a digital signal whose spectrum is substantially confined in one inner sideband. In other embodiments, a baseband digital signal is combined with an analog monophonic audio signal and transmitted in upper inner and lower inner sidebands using nonlinear compatible quadrature amplitude modulation (NC-QAM). Additional digital signals' spectrum occupies the lower outer and upper outer sidebands. In certain embodiments, for each transmitted codeword, part of the codeword information is replicated by modulated signals in both the upper outer and lower outer sidebands, preferably with diversity delay between the outer sideband signals.
Abstract:
Apparatus and method for transmitting a digitized wideband signal robust to multipath degradation and intersymbol interference within a predetermined broadcast band. A basis set of wideband mutually orthogonal pseudorandom basis signal waveforms of substantially equal length and having predetermined autocorrelation values and a predetermined spectral shape are generated. The length of the waveforms in the set represents a baud. The wideband waveforms of the basis set are data modulated so as to define digital data. The basis set substantially maintains the predetermined spectral shape during the modulation.
Abstract:
A method and system are provided for the synchronous transmission and reception of multiplexed digital signals such as spread spectrum. The system uses biorthogonal modulation of a plurality of orthogonal signals, preferably wideband, together with simultaneous orthogonal multiplexing. The method is found to significantly mitigate the crosscorrelation interference that is caused by the interaction between the multiplexed signals. The system transmits a lesser number of multiplexed orthogonal signals than would be required in the corresponding antipodal system, thereby reducing the crosscorrelation interference, while maintaining the same information throughput. The bit error rate of the system is reduced. The method combines aspects of unequal error protection (UEP) error correction coding (ECC) with a receiver architecture for biorthogonal signals. The system exhibits a signal-to-noise ratio (SNR) improvement in the detection of some fraction of the encoded digital data bits. This facilitates the use of additional error control redundancy in the remaining data bits, which results in an overall improvement in the decoded error rate performance.
Abstract:
A method and system are provided for the transmission and reception of a varying reference signal together with a data-modulated signal in a communication system. The reference signal is modulated by multiplying it by a predetermined reference value sequence and is summed together with the data-modulated signal in the transmitter system. The reference signal and reference value sequence generators are identically embodied in both the transmitter and receiver systems. The receiver system determines an estimate of the transmitted reference signal by canceling the effect of the reference signal modulation. The estimated reference signal may be removed from the received signal prior to demodulation of the data-modulated signal by subtracting the unmodulated reference signal estimate, which is multiplied in the receiver system with the known reference value sequence.
Abstract:
A system and method for transmitting digital information through a medium such as atmospheric free-space includes a transmitter which generates a signal based on a basis set of mutually orthogonal, spectrally-shaped, sequences of substantially equal length and having predetermined autocorrelation values. The sequences may resemble noise in at least some of their characteristics. The orthogonality or cross-correlation characteristics, the autocorrelation characteristics and the resemblance to noise are due to features derived from sequences of pseudo-random numbers which themselves resemble noise in at least some of their characteristics. The waveform set based on the sequences is modulated digitally. The modulated set may be summed together along with a wideband reference signal of reduced amplitude and optionally an FM analog signal to form a composite signal which is broadcast typically through free space to at least one receiver. The receiver separates the analog FM signal from the digital signal and thereafter demodulates the digital data-carrying waveforms and outputs a stream of digital data. It has been determined to be resistant to multipath degradation.
Abstract:
Using various embodiments, methods and systems for secure Bluetooth Low Energy communications, in an unconnected state, are described herein. In one embodiment, conventional BLE transmitting device data can be supplemented with authentication information, including a message authentication field which enables receivers to determine if the received beacon/transmitted BLE peripheral data is genuine. In another embodiment, the authentication data can also include a time varying value field in order to prevent unintentional acceptance of transmitting device data from unauthorized replicated BLE peripherals. In one embodiment, the transmitting device computes an authentication tag using at least a secret key known to the receiving device and transmits the authentication tag to the receiving device. The receiving device can compute an authentication value using the secret key and other transmitting device information and determine if the transmitting device data is genuine by comparing the computed authentication value and the received the authentication tag.