摘要:
An optical waveguide fiber including a core region, an inner clad layer surrounding and in contact with the core region and an outer clad layer surrounding and in contact with the inner clad layer. The refractive index percent of the radii of the core region, the inner clad layer and the outer clad layer are chosen from the following ranges: the index of the core region within the range of from about 1.332 to about 1.628; the index of the inner clad layer within the range of about 1.30 to about 1.591; the index of the outer clad layer within the range of from about 1.305 to about 1.595; the outer radius of the core region within the range of from about 1.71 &mgr;m to about 2.09 &mgr;m; and, the outer radius of the inner clad layer within the range of from about 4.41 &mgr;m to about 5.39 &mgr;m.
摘要:
The present invention provides devices and methods for dispersion compensation. According to one embodiment of the invention, a dispersion compensating device includes a negative dispersion fiber having an input configured to receive the optical signal, the negative dispersion fiber having a length and dispersion sufficient to remove any positive chirp from each wavelength channel of the optical signal, thereby outputting a negatively chirped optical signal; an amplifying device configured to amplify the negatively chirped optical signal; and a nonlinear positive dispersion fiber configured to receive the negatively chirped optical signal. The devices of the present invention provide broadband compensation for a systems having a wide range of variable residual dispersions.
摘要:
The present invention provides devices and methods for dispersion compensation. According to one embodiment of the invention, a dispersion compensating device includes a negative dispersion fiber having an input configured to receive the optical signal, the negative dispersion fiber having a length and dispersion sufficient to remove any positive chirp from each wavelength channel of the optical signal, thereby outputting a negatively chirped optical signal; an amplifying device configured to amplify the negatively chirped optical signal; and a nonlinear positive dispersion fiber configured to receive the negatively chirped optical signal. The devices of the present invention provide broadband compensation for a systems having a wide range of variable residual dispersions.