摘要:
An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Each downstream data flow is fragmented into individual octets that are multiplexed into MPEG packets. An MPEG packet may carry the octets for a plurality of individual data flows. Furthermore, the MPEG packets may be frequency-division multiplexed across and may be contemporaneously communicated over a plurality of frequency channels. Also, the octets from a data flow do not necessarily have to use consecutive octets in an MPEG packet. Instead, consecutive octets in an MPEG packet may carry information for two different data flows. Thus, in an MPEG packet there may be intervening octets that might be allocated to other data flows between the octets of an ethernet frame or other type of data from one data flow. In addition, the data flows carried in MPEG packets may support one or a plurality of client devices. Therefore, an MPEG packet may be used to time-division multiplex multiple data flows to one or a plurality of client devices.
摘要:
The present invention is directed towards a burst-mode combiner (BMC) typically located within a headend facility for transmitting received reverse signals to a specific application device dependent upon the presence of a carrier signal. The BMC includes BMC circuits that are each coupled to reverse receivers. The BMC circuits filter the reverse signals into specific frequencies. A carrier detect circuit detects the presence of a carrier signal, and when detected, allows the delayed reverse signals to be transmitted through to the application device.
摘要:
An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of Ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each has guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. As a local network, the architecture supports guaranteed bandwidth for delivery of data flows to a plurality of host devices.
摘要:
An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator. Furthermore, the architecture may be integrated into other higher level devices such as, but not limited to, bridges, switches, routers, and/or gateways. The architecture generally may peacefully coexist with other services commonly-found in cable distribution networks.
摘要:
An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator. Furthermore, the architecture may be integrated into other higher level devices such as, but not limited to, bridges, switches, routers, and/or gateways. The architecture generally may peacefully coexist with other services commonly-found in cable distribution networks.
摘要:
An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator. Furthermore, the architecture may be integrated into other higher level devices such as, but not limited to, bridges, switches, routers, and/or gateways. In addition, the architecture may be used as a local network such as the networks commonly called local area networks (LANs). As a local network, the architecture supports guaranteed bandwidth for delivery of data flows to a plurality of host devices. Each host device might have a network interface card (NIC) that conforms to the architecture of the preferred embodiments of the present invention. Moreover, because the architecture may peacefully coexist with other services commonly-found in cable distribution networks, these other services may also be delivered to a host device. Thus, as a non-limiting example a host device may utilize the preferred embodiments of the present invention for local area network (LAN) data communication, and may also utilize cable television video channels in the same communication medium to carry various multimedia information.
摘要:
Disclosed herein are methods of providing a client with local area network connectivity and access to other services in a cable network. One such method includes: allocating bandwidth in the network to support bi-directional data communication between the host and a central concentrator. Bandwidth is allocated for a downstream flow on at least one downstream frequency channel based on a mapping between the downstream flow and a particular octet in a downstream packet. Bandwidth is allocated for an upstream flow on at least one non-shared upstream tone. The method also includes conveying a bi-directional data flow between the host and the concentrator over the allocated bandwidth, including conveying the upstream flow using the allocated bandwidth and conveying the downstream flow using the allocated bandwidth. The method also includes utilizing bandwidth in the network not allocated to data communications to provide the host with at least one audio/visual service.
摘要:
A broadband communications network having an uninterruptible power supply. The power supply has one input connected to AC line voltage and another input connected to a gas powered electrical generator. The power supply contains an uninterruptible power supply module having a controlled ferroresonant transformer and a battery. The power supply also contains a bypass module having a controlled ferroresonant transformer. Switches are provided to allow either of the inputs to be connected to either the UPS module or the bypass module for the generation of power signals for supplying power to the broadband communications network.
摘要:
An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator. Furthermore, the architecture may be integrated into other higher level devices such as, but not limited to, bridges, switches, routers, and/or gateways. The architecture generally may peacefully coexist with other services commonly-found in cable distribution networks.
摘要:
A system or method for interconnecting a security system with a telephone system. The system comprises one or more lockout modules that are connected between non-priority telephone devices and a telephone line. A security panel is directly connected to the telephone line. The lockout modules comprise a switch means for disconnecting the telephone device attached thereto from the telephone line when the security panel connects to the telephone line. The lockout modules further comprise a latch device that gives the first non-priority telephone device to connect to the line exclusive use of the line against other non-priority telephone devices. The lockout module further comprises a circuit that inhibits the reconnection of the telephone devices to the line to allow the security panel to recover a high and dry telephone line. The lockout module may be modified to include a switch that allows other non-priority telephone devices to share the line.