Abstract:
Disclosed is a method of making a glazing unit, comprising providing at least one self-supporting insert of light-transmissive insulation material in the form of honeycomb arrangement of cells, substantially filling the cells of said at least one self-supporting insert with a granular, thermally insulating, light transmissive filler material, and sandwiching said at least one insert between a pair of glass lites.
Abstract:
A method of making a composite light diffusing panel including at least spaced apart lites with a fabric layer applied to an inner surface of at least one of said lites, involves applying a transparent adhesive to the layer of fabric or the lite(s), firmly applying the layer of fabric onto the lite(s) to avoid wrinkling fabric, curing the adhesive to bond the fabric to the lite(s), and assembling the lites to form the light diffusing panel. In this way, a functionally useful product can be obtained that does not suffer from wrinkling and other distracting effects.
Abstract:
Disclosed is an interlocking glazing panel comprising a pair of transparent or translucent lites, and rigid structural spacer located between, and firmly attached to, said lites to define a gap therebetween, said rigid structural spacer extending around at least part of the periphery of said glazing unit and having over at least a portion thereof an interlocking profile to provide a firm interlocking connection to another interlocking panel having a complementary like interlocking profile, wherein said glazing panel can be inserted as a structural member in a wall or roof constructed of interlocking panels.
Abstract:
Disclosed are a method, a computer-based system and a computer-readable medium having computer-readable code embodied therein for creating the specifications for the fabrication of a fully customized enclosure housing internal components. First a suitable three dimensional template representing a basic form of the enclosure is chosen from a plurality of predetermined three dimensional templates and sized. Each face of the enclosure is selected and customized by selecting specific design features from a range of predetermined design options as necessary until a complete set of specifications for the enclosure is obtained.
Abstract:
An inorganic particulate, having strong absorption in the thermal infrared region of the radiative spectrum and low absorption in the solar or visible portion of the radiative spectrum, is combined with a plastic resin, to create a composite material. This composite is used in whole or in part to manufacture a honeycomb transparent insulation material, or is applied as a coating to a honeycomb transparent insulation material. The resulting honeycomb transparent insulation can have similar visible or solar light transmittance, and will have improved thermal radiant suppression relative to an identical honeycomb made of plastic resin only.
Abstract:
A sealed translucent glass glazing unit includes two lites of spaced translucent glass to define a gap which contains an absorptive filler. A spacer around the perimeter of the unit seals the unit and maintains the gap. A vent tube is mounted within the spacer with one end open to the filler and one end open to the exterior.
Abstract:
A method of making a composite light diffusing panel including at least spaced apart lites with a fabric layer applied to an inner surface of at least one of said lites, involves applying a transparent adhesive to the layer of fabric or the lite(s), firmly applying the layer of fabric onto the lite(s) to avoid wrinkling fabric, curing the adhesive to bond the fabric to the lite(s), and assembling the lites to form the light diffusing panel. In this way, a functionally useful product can be obtained that does not suffer from wrinkling and other distracting effects.
Abstract:
Disclosed is a method of making a composite light diffusing panel, comprising providing a first glass lite with a light transmissive fabric layer applied to surface thereof; applying a primary sealant to the surface of the first glass lite using an edge referencing method to meet horizontal dimensional requirements; mounting a spacer to the primary sealant on the surface of the first glass lite to form a first subassembly; applying a primary sealant to the surface of a second glass lite also using an edge referencing method to form a second subassembly; and topping the second subassembly atop the first subassembly to form an assembled composite light diffusing panel. Also disclosed is a flipping apparatus that can be used in the method.
Abstract:
Disclosed is an interlocking glazing panel comprising a pair of transparent or translucent lites, and rigid structural spacer located between, and firmly attached to, said lites to define a gap therebetween, said rigid structural spacer extending around at least part of the periphery of said glazing unit and having over at least a portion thereof an interlocking profile to provide a firm interlocking connection to another interlocking panel having a complementary like interlocking profile, wherein said glazing panel can be inserted as a structural member in a wall or roof constructed of interlocking panels.
Abstract:
Disclosed is a method of making a glazing unit, comprising providing at least one self-supporting insert of light-transmissive insulation material in the form of honeycomb arrangement of cells, substantially filling the cells of said at least one self-supporting insert with a granular, thermally insulating, light transmissive filler material, and sandwiching said at least one insert between a pair of glass lites.