Abstract:
An apparatus and method for transmitting an indicator of channel quality while minimizing the use of a broadcast channel is described. A metric of forward link geometry of observed transmission signals is determined. An indicator of channel quality value is determined as a function of the observed transmission signals. An access sequence is selected, randomly, from one group of a plurality of groups of access sequences, wherein each of the plurality of groups of access sequences correspond to different ranges of channel quality values.
Abstract:
Method and apparatus for transmission of information in multiple access communication system is described. Information from a plurality of access terminals is received. Alternatively, an access terminal determines what information needs to be sent to the access point. A determination is made as to whether sufficient resources, such as time, power level, or channels, are available to send an indication of acknowledgment. If sufficient resources are not available at the given time, the transmission of an indication of acknowledgment is delayed until sufficient resources are available.
Abstract:
Systems and methodologies are described that facilitate dynamically supplementing or decrementing resource assignments to mobile devices in a wireless network environment without requiring transmission of replacement assignments. Supplemental assignments can be generated based on information related to mobile device need and resource availability. Moreover, resource assignments can be persisted for a mobile device.
Abstract:
A method and apparatus for monitoring other channel interference in wireless communication system are described. An OSI Monitor Set (OSIMonitorSet) is updated at the beginning of every superframe of a reverse link (RL) serving sector. A list of Pilot PN's (PilotPN's) of the sectors whose pilot strength (PilotStrenth) is larger than or equal to an other sector interference Monitor Threshold (OSIMonitorThreshold) in an OSIMonitorSet is provided, wherein the PilotPN and the PilotStrength are fields in an Overhead Parameter List (OverheadParameterList) of an Overhead Message Protocol and the OSIMonitorThreshold is a configuration attribute of the Overhead Message Protocol. The PilotPN of the reverse link Serving Sector (RLServingSector) are excluded. It is determined if the size of the list OSI Monitor Set Size (OSIMonitorSetSize) is larger than or equal to NOSIMonitorSet, wherein NOSIMonitorSet is a configuration attribute of the Overhead Message Protocol. Strongest PilotStrength of NOSIMonitorSet PilotPN's are kept.
Abstract:
Apparatus and methods for interlacing communications in random access control channels of an Orthogonal Frequency Division Multiple Access (OFDMA) wireless communication system are described. A wireless communication device communicating over distinct OFDMA control channels to multiple serving sectors may operate under link limited conditions. The wireless communication device can interlace the communications between the multiple serving sectors. The wireless communication device can interlace the control channel communications in a number of interlaces equal to the number of distinct control channels over which communications are scheduled. In another embodiment, the wireless communication device divide the multiple scheduled control channel communications into two or more sets and can interlace the sets. In another embodiment, the wireless communication device can reserve a first interlace for control channel communications with the serving sector and can time multiplex the remaining control channel communications on a second interlace.
Abstract:
Systems and methods are described that mitigating coverage gaps near region boundaries using a plurality of multi-sector broadcast (MSBC) paging channels in wireless networking environments. One or more MSBC paging channels can be assigned unique time slots, such that although the channels can be identical, they are disjointed in time. Accordingly, such channels and/or dynamically generated paging zones associated therewith can be overlapped in areas where wireless device density is high and requires substantial paging capacity. Additionally, a single paging channel can be employed in multiple instances in a paging region without overlap to mitigate inter-channel interference.
Abstract:
A method and apparatus for transmitting and processing a QuickChannelInfo block is described. A plurality of superframe indices are determined, and a QuickChannelInfo block is transmitted to an access terminal in the superframe with an odd superframe index. The contents of the QuickChannelInfo block are changed in accordance with a QuickChannelInfo Validity field of the QuickChannelInfo block. It is determined if a multi-carrier mode of a protocol is MultiCarrierOn. The QuickChannelInfo block is transmitted on each carrier of the protocol. The QuickChannelInfo block is transmitted to the access terminal over a communication link. The QuickChannelInfo block is processed after the QuickChannelInfo block is received at the access terminal over the communication link.
Abstract:
A method and apparatus to determine whether a transmission was successfully received in a multiple access communication system is claimed. First and second encoded data packets are received and decoded. The first and second data packets are then re-encoded, and correlated to determine whether the first and second re-encoded data packets are the same. If there is a high degree of correlation, an indicator of acknowledgement is transmitted to indicate that there is a high degree of correlation between the first and second re-encoded data packets. If there is a low degree of correlation, a determination is made that the previously transmitted indicator of acknowledgement was correctly received.
Abstract:
The disclosed embodiments provide for methods and systems for selecting sectors for handoff in a communication system. According to one aspect, the method includes monitoring an indicia of transmit power on a plurality of RL control channels directed to a plurality of sectors, and selecting one of the sectors as a candidate for a RL handoff. The disclosed embodiments also provide for methods and systems for indicating a selected serving sector for handoff in a communication system. According to one aspect, the method includes sending a first signal to a first sector to indicate the first sector as a serving sector for a forward-link handoff, and sending a second signal to a second sector to indicate the second sector as a serving sector for a reverse-link handoff.
Abstract:
Systems and methods are disclosed that facilitate dynamically assigning system resources in a wireless network environment by detecting a resource conflict between an existing resource assignment to one or more existing user devices and a new resource assignment for a subsequent user device. Upon detection of a conflict, a decremental assignment can be provided to the one ore more existing user devices to decrement the existing resource assignment in order to resolve a detected resource conflict. Decremental assignments can be implicit or explicit, and can facilitate mitigating transmission overhead costs due to their relatively small size when compared to conventional complete deassignment/reassignment messages.