Abstract:
Techniques for enabling inter frequency assignment scanning while remaining at one frequency are described. In one embodiment, for example an apparatus may include a wireless interface subsystem, a memory and a processor. The memory may include data and instructions to operate the processor to communicate with a first fixed device at a first frequency during a first communication session, scan for one or more first preambles at the first frequency from a second fixed device and scan for one or more second preambles at the first frequency from a third fixed device. In an embodiment, the second fixed device may operate at a second frequency and the third fixed device may operate at a third frequency. The apparatus may include a processor operative to perform a handover based on the one or more first preambles and the one or more second preambles for a second communication session.
Abstract:
All practical communication channels impose some type of corruption on received data through inter-symbol interference (ISI). ISI corruption is particularly acute in high-order constellation transmission. Although ISI effects of high-order constellation transmission are very large on average, some symbols may be received that suffer relatively low levels of ISI. These symbols are “reliable symbols” and can be used to provide blind estimation of the ISI coefficients. Once the ISI effects of a channel are known, all captured signals may be corrected.
Abstract:
A fast equalization technique is disclosed for systems using high-order constellations where symbols have been corrupted by data correlated noise (ISI). The technique permits ISI estimation to begin immediately upon receipt of captured samples. Training symbols are not required for the operation of the equalization technique. ISI estimation is weighted in accordance to a reliability factor of each captured sample.
Abstract:
In some embodiments, the invention involves increasing hybrid automatic repeat request (HARQ) throughput. In one embodiment, throughput may be increased by clearing the retransmission buffer at least one frame in advance, based on status received from the downlink device before a full acknowledgement. Another embodiment partitions HARQ bursts into two groups. A first group is for packet data units (PDUs) that are anticipated to be in error and a second group is for PDUs anticipated to be received correctly. Only PDUs that are anticipated to be in error, based on forward error correction (FEC) blocks, are to be saved in the retransmission buffer. Other embodiments are described and claimed.
Abstract:
All practical communication channels impose some type of corruption on received data through inter-symbol interference (ISI). ISI corruption is particularly acute in high-order constellation transmission. Although ISI effects of high-order constellation transmission are very large on average, some symbols may be received that suffer relatively low levels of ISI. These symbols are “reliable symbols” and can be used to provide blind estimation of the ISI coefficients. Once the ISI effects of a channel are known, all captured signals may be corrected.
Abstract:
In some embodiments, the invention involves increasing hybrid automatic repeat request (HARQ) throughput. In one embodiment, throughput may be increased by clearing the retransmission buffer at least one frame in advance, based on status received from the downlink device before a full acknowledgement. Another embodiment partitions HARQ bursts into two groups. A first group is for packet data units (PDUs) that are anticipated to be in error and a second group is for PDUs anticipated to be received correctly. Only PDUs that are anticipated to be in error, based on forward error correction (FEC) blocks, are to be saved in the retransmission buffer. Other embodiments are described and claimed.
Abstract:
A method and system to increase the throughput of a HARQ protocol in a wireless network. When a station receives a downlink HARQ sub-burst that has an incorrect cyclic redundancy check, it determines if there is an overflow event of its buffer. If so, the station reduces the size of the HARQ sub-burst to be stored in the buffer and stores the resized HARQ sub-burst in the buffer. When the station transmits an uplink HARQ sub-burst, the station can reduce the size of the transmitted HARQ sub-burst if it exceeds the size of the buffer. The amount of buffer required in the station can also be reduced by representing each log likelihood ratio (LLR) value of each of one or more bits of each symbol of a HARQ burst with a number of quantization bits based on a metric sensitivity to noise of each bit of each symbol.
Abstract:
A method and system to increase the throughput of a HARQ protocol in a wireless network. When a station receives a downlink HARQ sub-burst that has an incorrect cyclic redundancy check, it determines if there is an overflow event of its buffer. If so, the station reduces the size of the HARQ sub-burst to be stored in the buffer and stores the resized HARQ sub-burst in the buffer. When the station transmits an uplink HARQ sub-burst, the station can reduce the size of the transmitted HARQ sub-burst if it exceeds the size of the buffer. The amount of buffer required in the station can also be reduced by representing each log likelihood ratio (LLR) value of each of one or more bits of each symbol of a HARQ burst with a number of quantization bits based on a metric sensitivity to noise of each bit of each symbol.