Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses in a device comprising a receiver to scan a spectral band of a received signal comprising a desired signal contribution to determine whether signal data associated with at least a sub-band of the spectral band further comprises at least one undesired signal contribution. In response to determining that the signal data comprises at least one undesired signal contribution, the mobile station may initiate at least one notch filter to affect the undesired signal contribution in subsequent signal data associated with the received signal.
Abstract:
Methods and apparatus are provided for use in devices operatively enabled to establish timing signal offset data and/or utilize such established offset data.
Abstract:
The subject matter disclosed herein relates to receiving one or more SPS signals at two or more physically separated antennae. In an aspect, signals from the physically separated antennae may be downconverted into complex digital signals that may undergo further processing to improve one or more performance metrics related to position estimation operations, for example.
Abstract:
The subject matter disclosed herein relates to receiving one or more SPS signals at two or more physically separated antennae. In an aspect, signals from the physically separated antennae may be downconverted into complex digital signals that may undergo further processing to improve one or more performance metrics related to position estimation operations, for example.
Abstract:
The subject matter disclosed herein relates to a system and method for processing a signal received from a satellite positioning system (SPS) in the presence of a multi-tone jammer. In one particular implementation, processing of a signal may be altered in response to detection of one or more conditions.
Abstract:
Methods and apparatus for code phase processing in a wireless communication device are described herein. A wireless device performs code phase search on a pseudo random code spread signal received over a wireless channel. A correlator correlates the received signal to a plurality of code phases in each of a plurality of frequency hypothesis. A maximum peak and a second peak are determined from the correlation results. Cross correlation processing is performed on the maximum peak and the maximum peak is discarded in favor of the second peak for position processing based on the results of the cross correlation.
Abstract:
The subject matter disclosed herein relates to a system and method for processing a signal received from a satellite positioning system (SPS) in the presence of a multi-tone jammer. In one particular implementation, processing of a signal may be altered in response to detection of one or more conditions.
Abstract:
An apparatus and method for tracking a desired signal by sequentially tracking the desired signal with a variable integration time, performing automatic frequency control of the desired signal, and demodulating the desired signal using offline software. In one aspect, the automatic frequency control is performed using the offline software. In one aspect, the desired signal is from a GPS satellite.
Abstract:
The subject matter disclosed herein relates to a system and method for processing a signal received from a satellite positioning system (SPS) in the presence of a multi-tone jammer. In one particular implementation, processing of a signal may be altered in response to detection of one or more conditions.
Abstract:
An apparatus and method for short multipath mitigation. In one aspect the method comprises subtracting a first stronger path from a correlation function to obtain a first residual signal, wherein one component of the first residual signal is a weaker path; applying reconstruction on the first residual signal to obtain a first reconstructed weaker path; subtracting the first reconstructed weaker path from the correlation function to obtain a second residual signal; and applying reconstruction on the second residual signal to obtain a second stronger path. In one aspect, the apparatus includes an antenna for receiving a composite receive RF signal, a receiver front-end for converting the composite receive RF signal into a composite receive digital signal; and a processor for performing signal correlation on the composite receive digital signal to obtain a correlation function and for processing the correlation function to obtain a desired signal. In one aspect, the short multipath is identified by computing a Left Edge Height Ratio Indicator (LEHRI).