摘要:
The present invention relates to a method for recovering an organic-inorganic element-doped metal oxide from a hydrolysable metal compound, accompanied with contaminated water treatment. The present invention comprises steps of: a) adding a hydrolysable metal compound as a coagulant to a contaminated water to form a separable floc between the hydrolysable metal compound and contaminants present in contaminated water; b) separating the separable floc and the pre-treated water after flocculation treatment; and c) calcinating the separated floc over 500° C. to produce an organic-inorganic element-doped metal oxide. More preferably, the present invention further comprises subjecting the pre-treated water of the step b) to a microwave treatment to cause a photocatalytic degradation of an organic contaminant that remains in the pre-treated water, with the assistance of the remaining hydrolysable metal compound. A novel titanium compound is found as an alternative coagulant instead of iron and aluminum salts which most widely use in water treatment. Ability, capacity and efficiency of flocculation as the proposed titanium coagulant are similar to those of FeCl3 and alum coagulants in terms of removing organic matter. Titania produced by calcination of the separated floc after TiCl4 flocculation is mainly doped with C and P atoms.
摘要:
The present invention relates to a method for recovering an organic-inorganic element-doped metal oxide from a hydrolysable metal compound, accompanied with contaminated water treatment. The present invention comprises steps of: a) adding a hydrolysable metal compound as a coagulant to a contaminated water to form a separable floc between the hydrolysable metal compound and contaminants present in contaminated water; b) separating the separable floc and the pre-treated water after flocculation treatment; and c) calcinating the separated floc over 500° C. to produce an organic-inorganic element-doped metal oxide. More preferably, the present invention further comprises subjecting the pre-treated water of the step b) to a microwave treatment to cause a photocatalytic degradation of an organic contaminant that remains in the pre-treated water, with the assistance of the remaining hydrolysable metal compound. A novel titanium compound is found as an alternative coagulant instead of iron and aluminum salts which most widely use in water treatment. Ability, capacity and efficiency of flocculation as the proposed titanium coagulant are similar to those of FeCl3 and alum coagulants in terms of removing organic matter. Titania produced by calcination of the separated floc after TiCl4 flocculation is mainly doped with C and P atoms.