摘要:
A system for monitoring strain in concrete structures comprises a frame formbedding in the structure with first and second ends of the frame proximate an edge of the structure, a fiber-optic cable mounted on the frame and extending substantially from the frame first end to the frame second end, a light source in communication with a first end of the cable, a light detector in communication with a second end of the cable, and an information processor in communication with the light detector. The cable is adapted to propagate light from the source to the detector, and the processor is adapted to identify strain in the structure from data generated by the detector.
摘要:
Minute amounts of material, such as a contaminant, are detected, identified and located using a single procedure that eliminates the need for using complex and sometimes redundant instrumentation setups, multiple (and sometimes overlapping) analytic processes, or both. In a preferred embodiment, a series of processing steps enables one to detect, identify, and localize minute amounts of particular elements, e.g., contaminants, in material being tested. Data sets, suitable for characterizing components of samples at least spectrally and spatially, are collected from at least one uncontaminated sample of material (the “baseline” or “control”) and a sample of material under test (MUT) that may contain contaminants. Comparison of these data sets, using the procedures of the present invention, enables ready identification of minute amounts of material in any sample. The use of existing conventional procedures may require that multiple sets of data be taken or multiple processes be applied.
摘要:
The invention is a processor based analysis system with appropriate interface that includes multiple fish surrogates that each have a plurality of piezoelectric and triaxial accelerometer sensors for emulating sensory organs of a particular fish. The multiple fish surrogate array is immersed in flowing water intakes of a hydraulic structures such as intakes, intake bypasses, and diversion structures, and natural geological formation such as riffles, shoal areas, and pools. The invention is an interface system for data acquisition analysis and perspective display of acoustic and fluid dynamic data in or near these hydraulic structures and/or natural formations. To accomplish this, multiple sensors in each of the fish-shaped surrogate physical enclosures that form the array are deployed at the same time to describe a fish's aquatic environment at the hydraulic structure location. The gathered data can then be correlated with fish behavior for the purpose of developing methods of diverting fish from such areas of danger of a water intake or to attract them to a water bypass entrance system.
摘要:
Strain in concrete is sensed by a helical optical fiber embedded in the concrete and connected at one end to an external light source, and at the other end to a light detector, providing a signal output to an information processor, which provides a display of the strain in the concrete.
摘要:
The invention pertains to a hand-held or vehicle mountable portable procer based high resolution radar system for detecting and identifying an object by using high resolution radar. In particular, the invention concerns using radio waves for identifying a depth and material of an object within a media. This system can perform target and media identification in real-time. This process is achieved by the system's processor where the media identification results can be visually displayed on an output unit. The generated carrier signal used in the radar system is an exponentially decaying superimposed direct and alternating signal. The frequency of the carrier signal can be in the microwave region. The system performs analog to digital (A/D) conversion using integrated circuitry whose sampling rate is in the same as the carrier signal transmission rate. In addition, Fourier and Hilbert transforms of the observed signal is generated for frequency domain analysis of the observed object to be identified and a profile inversion methodology for real time analysis. To achieve high resolution results, digital codes such as Barker, Welti, or Frank codes are used in the processor. The carrier signal is coded using a digitally controlled phase shifter. Power usage by the instant invention's radar system is low. The profile inversion methodology is a real time based analysis.
摘要:
A portable nuclear material detector generally includes a scintillating fiber radiation sensor, a light detector, a conditioning circuit, a frequency shift keying (FSK) circuit, a fast Fourier transform (FFT) circuit, an electronic controller, an amplitude spectral addition circuit, and an output device. A high voltage direct current (HVDC) source is provided to excite the light detector, while a separate power supply may be provided to power the remaining components. Portability is facilitated by locating the components of the detector within a handheld-sized housing. When bombarded by gamma particles, the radiation sensor emits light, which is detected by the light detector and converted into electrical signals. These electrical signals are then conditioned and converted to spectral lines. The frequency of a give spectral line is associated with a particular radioactive isotope, while the cumulative amplitude of all spectral lines having a common frequency is indicative of the strength and location of the isotope. All or part of this information (identity, strength, direction, and distance) may be provided on the output device.
摘要:
Minute amounts of material, such as a contaminant, are detected, classified and located using a single procedure that eliminates the need for using complex and sometimes redundant instrumentation setups, multiple (and sometimes overlapping) analytic processes, or both. In one embodiment, a series of processing steps enables one to detect, classify, and localize minute amounts of particular elements, e.g., contaminants, in material being tested. Data sets, suitable for characterizing components of samples at least spectrally and spatially, are collected from at least one uncontaminated sample of material (the “baseline” or “control”) and a sample of material under test (MUT) that may contain contaminants. Comparison of these data sets, using the procedures of the present invention, enables ready classification of minute amounts of material in any sample. The present invention may be used for liquids, solids, and gases, with specific application to gels, pastes, hard powders, soft powders, films, inorganics, and pharmaceuticals.