摘要:
A method and system for treatment of incontinence and/or pelvic pain includes the injection or laparoscopic implantation of one or more battery- or radio frequency-powered microstimulators (10) beneath the skin of the perineum and/or adjacent the tibial nerve. The devices are programmed using radio-frequency control via an external controller (20, 30)) that can be used by a physician to produce patterns of output stimulation pulses judged to be efficacious by appropriate clinical testing to diminish symptoms. The stimulation program is retained in the microstimulator device (10) or external controller (20) and is transmitted when commanded to start and stop by a signal from the patient or caregiver. The system and method reduce the incidence of unintentional episodes of bladder emptying by stimulating nerve pathways (8) that diminish involuntary bladder contractions, improve closure of the bladder outlet, and/or improve the long-term health of the urinary system by increasing bladder capacity and period between emptying. The incidence of fecal incontinence is similarly reduced or eliminated. Furthermore, the system and method reduce or eliminate the incidence of pelvic pain by chronically stimulating nerve pathways that derive from the sacral roots using a miniature implantable neurostimulator that can be implanted with a minimal surgical procedure. Moreover, the system and method allow a patient to be taught to receive one or more patterns of neural stimulation that can be prescribed by a physician and administered without continuous oversight by a clinical practitioner.
摘要:
An implant stimulator device uses tantalum and tantalum pentoxide as a system for the conveyance of electrical stimulation pulses from stimulus-forming circuitry contained within an hermetic enclosure to the saline fluids of body tissue to be stimulated. Internal coupling capacitors are not used, yet the danger of having DC current flow to the saline fluids is eliminated. A preferred embodiment provides a multiplicity of electrode contacts made from sintered, anodized tantalum, connected via tantalum wire leads to tantalum feedthroughs into the hermetically sealed package containing the stimulus pulse-forming electronic circuitry. One or more counter electrode contacts (for monopolar or bipolar configurations, respectively) made of activated iridium, non-activated iridium, iridium in combination with a noble or non-noble metal, platinum, gold, or other metal which forms a low impedance contact with body fluids, is/are connected via platinum or other conductive metal leads to return feedthroughs. When powered-up, the stimulus generating circuit produces a steady polarizing potential of approximately half its maximum output voltage range, which potential is applied as a positive (anodizing) voltage to each tantalum electrode and associated lead and feedthrough, with respect to the counter electrode(s), which act as the reference point for the circuit.