Abstract:
A system for measuring reflected optical distortion in a contoured panel having a specular surface includes a conveyor for conveying the panel in a first direction, at least one display projecting a preselected multi-phase non-repeating contrasting pattern, and at least one camera, each one of the cameras uniquely paired with one of the displays. The system may also include a control programmed to execute logic for controlling each of the cameras to acquire the desired images, and logic for analyzing and combining the data acquired by the cameras to construct a definition of the surface of the panel, and logic for performing one or more optical processing operations on the surface data to analyze the optical characteristics of the panel.
Abstract:
A system and method for gaging the shape of a curved glass sheet includes, as components, (1) a system and method for acquiring three-dimensional surface data corresponding to the glass sheet, and (2) a system and method for receiving the acquired surface data, comparing the acquired surface to a pre-defined surface description, and developing indicia of the level of conformance of the contoured glass sheet to the pre-defined specification. The surface data acquisition system includes a conveyor for conveying the glass sheet, at least one display projecting a preselected contrasting pattern, and at least one camera. The camera(s) and display(s) are uniquely paired and are mounted in a spaced-apart relationship a known distance and angle from the surface of the glass sheet such that the camera detects the reflected image of the pattern projected on the surface of the glass sheet from its associated display.
Abstract:
A glass sheet forming system (10) has two parallel forming lines (12) that can utilize any two of three forming stations (18) to provide versatility in use for forming different glass sheet jobs of different sizes and shapes while reducing switchover time from one job to the next.
Abstract:
Glass sheet forming and annealing disclosed provides control of edge stresses by maintaining a press formed glass sheet on an annealing ring (72) below a heated upper forming mold (58) within a forming station (12) for slow cooling toward the glass strain point temperature.
Abstract:
A hot glass sheet processing system includes a roller conveyor (22) having sintered bonded fused silica rollers (24) and a roller support structure (34) located within a heated location (32) together with an elongated cooling unit (36) having a housing (38) defining a cooling chamber (40) that receives and has bearings (42) that rotatably support an aligned set of roller ends (30) having end caps (86) adhesively bonded to the roller ends. The cooling unit includes a cooling circuit that supplies cooling fluid to the cooling chamber (40) to provide cooling of the aligned set of roller ends (30) and the bearings (42).
Abstract:
A system (10) for forming glass sheets includes a glass location sensing assembly (80) having a fluid switch (82) that is actuated by a roller conveyed glass sheet (G) to control operation of transfer apparatus (69) that transfers the glass sheet from the roller conveyor (22) to a forming mold (48) at a design position for forming. A frame of the sensing assembly (80) supports a carriage (124) on which the fluid switch (82) is mounted for lateral movement with respect to the direction of conveyance of the glass sheet (G) so as to sense its leading extremity. A lateral positioner (130) adjusts the lateral position of the carriage (124) and the fluid switch (82) mounted on the carriage.
Abstract:
A glass sheet forming system (10) has two parallel forming lines (12) that can utilize any two of three forming stations (18) to provide versatility in use for forming different glass sheet jobs of different sizes and shapes while reducing switchover time from one job to the next.
Abstract:
A glass quench apparatus according to the present disclosure includes lower and upper quench heads configured to supply upward and downward gas flows to a heated glass sheet, and each quench head has multiple quench fins for distributing gas. For each quench head, adjacent quench fins are spaced apart center to center by a distance in the range of 0.87 to 1.15 inches, and each quench fin has multiple outlet openings that each have a diameter in the range of 0.25 to 0.36 inches. Furthermore, for each quench fin, the outlet openings are configured to provide spaced apart impingement points on the glass sheet such that adjacent impingement points are spaced apart by a distance in the range of 0.82 to 1.15 inches.
Abstract:
A glass sheet acquisition and positioning system and associated method are utilized in a glass sheet optical inspection system installed in-line in a glass sheet processing system. The acquisition and positioning system include an exterior support frame and a moveable glass sheet support frame connected to the exterior support frame such that the glass sheet support frame may be selectively positioned from first orientation whereby a glass sheet is removed from a conveyor and retained on the support frame, to a second orientation whereby the glass sheet is positioned for processing by the optical inspection system. The system may also include a glass sheet part identifier and a programmable control including logic for analyzing acquired image data and identifying the glass sheet as one of a set of known part types and thereafter securing and positioning the glass sheet on the glass sheet support frame based upon the part-shape analysis.
Abstract:
A method for supporting a heated glass sheet in connection with a glass processing operation may include adjusting a support structure so that multiple spaced apart support members of the support structure cooperate to define a shape that corresponds to a desired end shape of the glass sheet. The method may further include contacting the glass sheet with the support members until the glass sheet has been sufficiently cooled. Furthermore, the support structure may include a frame and a support assembly associated with the frame, the support assembly including the support members and a support connected to the support members such that at least a portion of each support member is adjustable with respect to the support. The support may further be connected to the frame at two locations on the frame such that the support spans an open area between the two locations on the frame.