Abstract:
Magnetic patterned media comprise topographical features readable with a slider-mounted non-magnetic transducer sensitive primarily to a local aerodynamic boundary condition, in addition to a magnetic recording layer substantially conforming to the topographical features. Passage of a transducer over the features generates effects that can be detected in, and separated from, the magnetic recording signal.
Abstract:
Magnetic patterned media comprise topographical features readable with a slider-mounted non-magnetic transducer sensitive primarily to a local aerodynamic boundary condition, in addition to a magnetic recording layer substantially conforming to the topographical features. Passage of a transducer over the features generates effects that can be detected in, and separated from, the magnetic recording signal.
Abstract:
The invention is directed to patterned magnetic media for use in magnetic recording and data storage, and various conditioning techniques that can be used to magnetically condition the patterns. For example, a medium can be formed to exhibit a pattern of surface variations defined by patterned areas and non-patterned areas. Techniques are described for magnetically conditioning the patterned areas. The techniques may be useful for perpendicular patterned media, i.e., media having patterns formed on the media surface and having a magnetic anisotropy that is perpendicular to the plane of the medium. In particular, perpendicular magnetic anisotropy has been found to be an important factor that allows effective conditioning of patterned features having relatively small widths.
Abstract:
The invention is directed to patterned magnetic media for use in magnetic recording and data storage, and various encoding techniques that can be used to magnetically encode data on the patterned media. For example, a patterned magnetic recording medium can include a first set of surface variations and a second set of surface variations. The medium can be conditioned to magnetically expose the surface variations relative to areas between the respective surface variations. Detection of the surface variations in the first set can allow for synchronization of a magnetic drive to the medium. Following such synchronization, the magnetic drive can selectively apply magnetic fields to a second set of surface variations of the patterned magnetic medium to encode data on the patterned magnetic medium.
Abstract:
A system for reading data from recording media having topographical features readable with a slider-mounted non-magnetic transducer sensitive primarily to changes in local aerodynamic boundary conditions.