摘要:
An apparatus for forming a wound roll of discrete overlapping sheets of web from a supply of continuous web. The web preferably is passed around a nip roller that steers the web onto the surface of a take-up core. A knife assembly including a knife blade extended from a knife holder is driven by a traversing mechanism across the width of the web to cut the wound web on the core into discrete sheets, the extended height of the knife blade being preferably the exact thickness of the web. In transverse cutting by the knife of the web wound on the take-up core, the knife holder travels on the outer surface of the web, thus assuring that the knife blade extends just to the outer surface of the next inner convolution of web, thereby cutting the continuous web into sheets without damaging previously wound web convolutions.
摘要:
A system for optimization of a regeneration schedule for a contact cleaning roller (CCR) used to remove particles from a substrate surface by being rolled along the substrate surface. In rolling along the surface, the CCR leaves a residual static charge. The level of leaving charge is sensed by a fieldmeter. When a CCR is first placed into service against a substrate, the leaving charge level is greater than the entering static charge level on the substrate ahead of the CCR. The entering charge is sensed by another fieldmeter, and the charge differential is determined and monitored. As the CCR becomes progressively loaded with particles during service, the leaving charge progressively diminishes. Thus the charge differential indicates inversely the particle loading of the CCR such that a charge differential limit can be set, below which the roller is removed from service and renewed by cleaning.
摘要:
A system for cleaning a moving substrate includes a rail mounted adjacent to the substrate surface and substantially transverse to the direction of movement thereof. A carriage for supporting a contact cleaning roller (CCR) is deployed on the rail for allowing axial translation of the CCR transversely of the substrate while in rolling contact therewith. Two renewal stations for cleaning the CCR are mounted adjacent the rail, one outboard of each substrate edge. The CCR is at least twice as long as the width of the substrate and is axially oscillable for a distance sufficient that all portions of the CCR surface may be cleaned by the renewal stations during one oscillation cycle of the CCR while the CCR maintains continuous contact with the substrate across the full width thereof. The CCR mounted on the carriage may be a primary CCR and the substrate may be a continuous web or sheet, or the CCR mounted on the carriage may be a secondary CCR and the substrate may be a primary CCR or other process roller.
摘要:
A system for cleaning particles from a moving web by engagement with contact cleaning rollers, wherein the web may be moved selectively out of contact with the cleaning rollers to prevent damage to the web surface, such as adherance, stripping, or ferrotyping, resulting from stationary contact with the cleaning rollers. The system includes contact cleaning roller assembly disposed adjacent to and transverse of the web path. Preferably, such assembly includes a rotatable turret supporting a plurality of rotatable contact cleaning rollers, preferably three rollers positioned equilaterally. The turret is positioned relative to the basic web path such that, in a non-operative mode, the web is not in contact with the cleaning rollers, the web path bypassing the cleaning rollers. Thus, during periods of maintenance or other downtime, the web first surface is protected from being damaged by stationary contact with the cleaning rollers. The system further comprises at least one, preferably two, movable backing roller adjacent the second surface of the web, the web passing between the backing rollers and the cleaning rollers. To engage the web with the cleaning assembly into an operative mode, the backing rollers are moved towards the turret to alter the basic web path such that the web first surface is brought into engagement with the cleaning rollers in a second web path.
摘要:
A system for cleaning a web surface including an axially oscillable contact cleaning roller (CCR) positionable to be in contact with the web surface on a free-span of the web. The CCR, which may be mounted in a frame, enjoys a wrap angle greater than 0.degree. and may also be positionable to be out of contact with the web for renewal of the CCR surface. The increased CCR wrap angle can improve the efficiency of particle removal relative to a nipped CCR installation. Either the frame or the roller itself is oscillable such that the CCR may be moved transversely of the web while in rolling contact with the web surface to distribute particles associated with the edges of the web over a broader area of the CCR. Preferably, the ratio of oscillation velocity to web velocity is less than about 0.01 and preferably the web tension is greater than about 0.5 pounds per inch of web width. Plastic and paper webs having a thickness as low as about 0.001 inch may be readily cleaned without wrinkling. Existing CCR web cleaning installations having backing rollers may be readily modified and simplified to provide free-span CCR cleaning in accordance with the present invention.
摘要:
A contact cleaning roller (CCR) system includes a shell having an electrostatically active outer surface and being supported by a close-fitting rotatable shaft. The shaft within the shell is provided with a cam groove extending from a first axial location to a second axial location disposed 180.degree. from the first axial location, and then back to the first axial location. A cam follower attached to the inner surface of the shell rides in the cam groove, causing the shell to oscillate axially of the shaft at a frequency of oscillation which is the numerical difference between the rotational frequencies of the shell and shaft. In a preferred embodiment, the CCR shell is nipped against a backing roller, which may be an idle roller or a driven roller, the web passing therebetween in contact with the working surfaces of both rollers. Outboard of the working surfaces, the shaft of the backing roller has a first drive roller having a first diameter, and the shaft of the barrel cam has a second drive roller nipped against the first drive roller and having a second diameter slightly different from the first diameter. Thus, the CCR shell turns at a rotational frequency imposed by the linear velocity of the web whereas the CCR shaft turns at a different frequency as imposed by the relative diameters of the two speed-controlling drive surfaces, the frequency differential being equal to the oscillation frequency of the CCR shell along the barrel cam.
摘要:
A contact cleaner roll cleaning system includes a frame supporting the system relative to a moving web, a contact cleaner roll turret on the frame, and a roll cleaner on the frame. The turret supports two or more rotatable contact cleaner rolls, an active roll in rolling contact with the web, and an idle roll out of contact with the web for cleaning. The idle roll is kept rotating while it is idle and being cleaned. The turret is rotatable to sequentially put the cleaner rolls into and out of contact with the web. The roll cleaner includes an absorbent cleaning material mounted adjacent to the idle roll for placement against it and movement lengthwise along it to wipe it clean. Spindles advance the cleaning material between wipings of the idle roll, and a liquid delivery system keeps the cleaning material wet.