Abstract:
A poppet valve assembly for a high-speed compressor, the poppet valve assembly including a cage that includes a plurality of counter bores disposed therein. The poppet valve assembly further includes a plurality of poppets, each poppet having a stem and a head. The head of each poppet has a maximum diameter that is less than approximately 0.75 inches. The stem of the poppet is disposed in each of said counter bores. The poppet valve assembly also includes a seat plate overlying said cage, said seat plate including a plurality of through bores axially aligned with the counter bores of the cage. Each through bore is sized to have a smaller diameter than the maximum diameter of the head. A lift spacer is disposed in each of the counter bores.
Abstract:
A poppet scavenger valve includes multiple cages for multiple poppets, permitting better control of the spacing of the assembly, facilitating maintenance and permitting better fluid flow through the cage structure. A spacer or lift plate may be positioned between the cage and the seat for defining a flow control device for accurately setting and controlling the valve flow. Each cage component is mounted on the lift plate and is trapped between the plate and the seat. Alignment pins are provided to assure proper alignment between the cylinders and the mated counter bores in the cages. The stroke, or valve flow, can be controlled by adjusting the height of the lift plate, without any alteration to or modification of the cage. Multiple cage configurations are possible, including cages for supporting any array of poppets from a grid to a longitudinal assembly. Each cage is adapted for supporting any multiple of poppets, including single poppet cage systems where applicable. Each of the plurality of cages in the valve system may be customized to provide clearance for external components and for other uses, as necessary.
Abstract:
A piston system for a reciprocating compressor is adapted for high speed, high pressure unloading conditions by providing a dual stage piston assembly wherein the piston is adapted for absorbing and redistributing a portion of the load during the high pressure applications or high pressure portion of a cycle without reducing the efficiency of the system during normal loads. Pressure of up to 4000 psi can be handled without damage to the piston or other valve components. The valve plate is held in the closed position by a compression spring which is adapted to be engaged by a finger/driver upon reciprocation of the valve piston. The finger driver moves with the piston against the valve plate to open the valve on the plunger downstroke and move away from the valve on the plunger upstroke. A shock absorbing element is positioned in the plunger/finger assembly to absorb the shock of the driving downstroke, thereby reducing the shock of the finger against the valve plate.