摘要:
A method and system for lymph node segmentation in computed tomography (CT) images is disclosed. A location of a lymph node in a CT image slice is received. Intensity constraints are determined based on a histogram analysis of the CT image slice, and a spatial analysis of the intensity constrained CT image slice is performed using edge detection. An initial contour is estimated based on the lymph node location and the spatial analysis. The lymph node is then segmented by propagating the initial contour using an evolving elliptical model to define the lymph node boundaries.
摘要:
A method and apparatus for automatically detecting stent struts in an image is disclosed whereby the inner boundary, or lumen, of an artery wall is first detected automatically and intensity profiles along rays in the image are determined. In one embodiment, detection of the lumen boundary may be accomplished, for example, by evolving a geometric shape, such as an ellipse, using a region-based algorithm technique, a geodesic boundary-based algorithm technique or a combination of the two techniques. Once the lumen boundary has been determined, in another embodiment, the stent struts are detected using a ray shooting algorithm whereby a ray is projected outward in the OCT image starting from the position in the image of the OCT sensor. The intensities of the pixels along the ray are used to detect the presence of a stent strut in the image.
摘要:
An improved method of designing hearing aid molds is disclosed whereby regions of an ear impression model are identified as a function of a geodesic distance measure. According to a first embodiment, a canal point of an ear impression model is identified as that point having a maximum normalized geodesic distance as compared to all other points on the surface of the ear impression model. According to a second embodiment, a helix point of the ear impression model is identified as that point having a maximum normalized geodesic distance as compared to all points except those points in the canal region of said ear impression model. Finally, in accordance with another embodiment, a geodesic distance between a canal point and a helix point of an ear impression model is identified and a percentage threshold, illustratively 65%, is applied to that geodesic distance to identify a crus region.
摘要:
A method for modeling a 2-dimensional tubular structure in a digitized image includes providing a digitized image of a tubular structure containing a plurality of 2D balls of differing radii, initializing a plurality of connected spline segments that form an envelope surrounding the plurality of 2D balls, each the spline segment Si being parameterized by positions of the ith and i+1th balls and contact angles αi, αi+1 from the center of each respective ball to a point on the perimeter of each the ball contacting the spline segment Si, each the αi affecting spline segment Si and Si−1, and updating the angles by minimizing an energy that is a functional of the angles, where the updating is repeated until the energy is minimized subject to a constraint that the envelope is tangent to each ball at each point of contact, where the envelope is represented by the contact angles.
摘要翻译:一种用于对数字化图像中的二维管状结构进行建模的方法包括提供包含不同半径的多个2D球的管状结构的数字化图像,初始化形成围绕多个2D球的包围的多个连接的花键片段 ,每个样条段S i i i被第i个和第i + 1个第 SUP>球的位置参数化,并且接触角α1 从每个相应球的中心到接触花键片段S i的每个球的周边上的点的每个α,α,α, 影响样条线段S i和S i-1,并且通过使作为角度的函数的能量最小化来更新角度,其中 重复更新直到能量被最小化,受限于在每个接触点处包络与每个球相切,其中包络由接触角表示。
摘要:
A method for segmenting intravascular images includes acquiring a series of digitized images acquired from inside a vessel, each said image comprising a plurality of intensities corresponding to a 2-dimensional grid of pixels, providing a precomputed set of shapes for modeling contours of vessel wall boundaries, wherein a contour can be expressed as a sum of a mean shape and a inner product of shape modes and shape weights, initializing a boundary contour for one of said set of images, initializing said shape weights by projecting a contour into said shape modes, updating said shape weights from differential equations of said shape weights, and computing a contour by summing said mean shape and said inner product of shape modes and updated shape weights.
摘要:
A system and method for segmentation of anatomical structures in MRI volumes using graph cuts is disclosed. In this method, a template is registered to an MRI brain volume. The template identifies seed points of anatomical brain structures, such as the cerebrum, the cerebellum, and the brain stem, in the MRI brain volume. Any or all of the anatomical brain structures can be segmented using graph cuts segmentation initialized based on the seed points identified by the template. It is possible to segment each of the anatomical brain structures by performing a hierarchical three-phase segmentation process including brain/non-brain segmentation, cerebrum/cerebellum and brain stem segmentation, and cerebellum/brain stem segmentation.
摘要:
A method and apparatus for rounding a sharp edge of a model of an object is disclosed whereby a ball is propagated in a desired direction along the edge to be smoothed. The position of the ball at each point in its propagation is noted and, as a result, a virtual tunnel through which the ball passed may be constructed. Points on the sides of the surface of the object in proximity to the sharp edge are then projected onto the virtual tunnel by connecting with a line each point in proximity to the sharp edge to the center of the tunnel. New projected points are created at each position on the surface of the tunnel where the lines intersect that surface. The original points along the sharp edge are then hidden or deleted and the points along the virtual tunnel are connected via well-known surface reconstruction methods. In this way, a sharp edge of a triangle mesh model are advantageously smoothed.
摘要:
A method for registering two three-dimensional shapes is disclosed whereby the two shapes are represented as zero level set of signed distance functions and the energy between these two functions is minimized. In a first embodiment two undetailed ear impression models are rigidly registered with each other. In another embodiment, a detailed ear impression is initially aligned with an undetailed ear impression model and, then, the detailed ear impression model is rigidly registered with the undetailed ear impression model as a function of said signed distance functions. In accordance with another embodiment, an undetailed ear impression model is non-rigidly registered with a template ear impression model as a function of said signed distance functions.
摘要:
A method of designing hearing aid molds is disclosed whereby two shapes corresponding to graphical images of ear impressions are registered with each other to facilitate joint processing of the hearing aid design. In a first embodiment, a first graphical representation of a first ear impression is received and a feature, such as the aperture of the ear impression, is identified on that graphical model. A first vector is generated that represents the orientation and shape of that first feature. The three-dimensional translation and rotation of that first vector are determined that are necessary to align the first vector with a second vector representing the orientation and a shape of a feature, once again such as the aperture, of a second ear impression. In another embodiment, this alignment is then refined by minimizing the sum of the distances between points on the first and second graphical representations.
摘要:
A system and method for graph cut image segmentation using a shape prior is provided. In this method, an initial shape is applied to a portion of an image to be segmented. A narrowband is formed around a border of the shape, and a minimized graph cut is calculated for a portion of the image within the narrowband. The shape is then adjusted using the shape prior to fit the minimized graph cut. This method can be iteratively performed so that the shape evolves to segment an object from an image. The shape prior can be a parametric shape, such as an ellipse, or a statistical shape eigenspace calculated based on one or more training shapes.