Abstract:
An apparatus is provided for driving wheels for an in-wheel system, including: a driving shaft which is the center of rotatable driving; a fixation supporter rotatably supporting the driving shaft and coupled to the driving shaft; an in-wheel motor generating rotational power, which is coupled to the inside of a wheel in which a tire is mounted on one driving shaft in a shaft direction of the fixation supporter; and a balancing member formed on the other driving shaft in the shaft direction of the fixation supporter and formed at a position corresponding to the wheel coupled with the in-wheel motor. According to the present invention, an eccentricity phenomenon which is caused due to inclination of a wheel and a motor in one direction of a fixation supporter can he prevented in an apparatus of driving wheels for an in-wheel system.
Abstract:
Disclosed herein is a motor assembly for a vacuum cleaner, the motor assembly including: an inlet introducing air therethrough; a motor; an impeller installed on a shaft of the motor and including a plurality of blades disposed at predetermined intervals between a pair of plates facing each other so that it rotates by the motor to suck the air; a diffuser disposed at an outer side of a discharge hole formed at an edge of the impeller; a first fan including a plurality of blade parts disposed at predetermined intervals while having the shaft as a concentric axis and disposed beneath the diffuser; and an outlet discharging the air to the outside.
Abstract:
Disclosed herein is a fan motor assembly. A motor includes a rotor unit and a stator unit. An impeller is provided on an upper end of a motor shaft of the motor. The impeller is rotated by the motor to suck air. The impeller includes a pair of plates that face each other, and a plurality of blades that are disposed between the plates at positions spaced apart from each other at regular intervals. A diffuser is disposed around an outlet formed in a periphery of the impeller. A motor housing encases the rotor unit and the stator unit therein. A sensing unit is provided on a lower end of the motor shaft that extends outwards from the motor housing. The sensing unit senses the rotation of the rotor unit. An inductor is installed in the motor housing.
Abstract:
Disclosed herein is a switched reluctance motor including: a rotor formed with a plurality of salient poles; a rotor core having the rotor coupled thereto; and a stopper formed integrally with the rotor core by an insert special molding method.
Abstract:
Disclosed herein is a switched reluctance motor comprising: an outer rotor provided with a plurality of salient poles protruded at equidistance along an inner peripheral surface thereof; and a stator provided in the outer rotor, including a plurality of stator cores including a pair of stator salient poles protruded toward the salient pole of the outer rotor and a stator yoke connecting and supporting stator salient poles to each other, and having phase windings in which coils are wound around the stator salient poles, wherein a magnetic flux generated by applying a current to the phase winding flows through the pair of stator salient poles and the salient pole of the outer rotor.
Abstract:
Disclosed herein are an apparatus and a method for diagnosing a fault of a multi-sensor of a motor. The apparatus includes: a plurality of tachometers attached to the motor to measure rotation speeds; and a plurality of processors each connected directly to the plurality of tachometers to receive the measured rotation speeds, thereby securing a plurality of directly obtained rotation speeds, sharing the obtained rotation speeds with each other, thereby obtaining a plurality of indirectly obtained rotation speeds, and performing a fault diagnosis on the plurality of tachometers using the plurality of directly obtained rotation speeds and the plurality of indirectly obtained rotation speeds.
Abstract:
Disclosed herein is a switched reluctance motor having a double rotor structure. An outer stator salient pole corresponding to an outer rotor salient pole is formed to have an “E” shape by sequentially disposing a main salient pole, a first auxiliary salient pole, and a second auxiliary salient pole and an inner stator salient pole corresponding to an inner rotor salient pole is formed to have a pi (π) shape by sequentially disposing a first salient pole and a second salient pole, such that a magnetic flux path is reduced, thereby making it possible to prevent the loss of magnetic force.
Abstract:
Disclosed herein is an axial flux permanent magnet (AFPM) motor including: a stator including a stator core, a magnet wire wound around the stator core, a shaft, and a stator core supporting member fixedly supporting the stator core to the shaft; and a rotor including a rotor case having a space part formed therein so as to receive the stator core therein, a magnet fixedly coupled to an inner side portion of the rotor case so as to face the stator core, and a bearing rotatably supporting the rotor case to the shaft.
Abstract:
Disclosed herein are a rotor assembly for a motor in which separation type rotor cores having the other polarity are disposed between core members of integral type rotor cores having one polarity and the separation type rotor cores and the integral type rotor cores are fixed to each other using wedges or injection molding materials that are formed of a non-magnetic material, such that movement of magnetic fluxes between the integral type rotor cores and the separation type rotor core may be minimized, and a manufacturing method thereof.
Abstract:
Disclosed herein is a switched reluctance motor in which a position detection part capable of detecting a rotational position of the rotor part is formed in a balancing member coupled to a rotor part and a sensor part is positioned at a position corresponding to that of the position detection part and on a cover surface of an inner side of the motor housing. According to a preferred embodiment of the present invention, the sensor part is positioned in the motor housing, thereby making it possible to protect the sensor part and improve reliability in sensing of a rotational position of the rotor part by the sensor part.