摘要:
A premixing burner (X) which consists essentially of at least two hollow partial bodies (1, 2), which are positioned one above the other and whose center lines (1b, 2b) extend offset relative to one another in the longitudinal direction of the partial bodies (1, 2), is employed for hot gas generation, for example in a firing plant. Due to this offset, tangential inlet slots (21, 22) respectively occur through which a combustion airflow (15) flows into the internal space (14) of the premixing burner (X). Venturi mixers (32) with fuel nozzles (36), through which a fuel (31) is introduced into the combustion air (15) flowing past at this point, are arranged in the region of these tangential inlet slots (21, 22).
摘要:
In a double-cone burner, at least one row of nozzles (10) for a gaseous fuel containing highly reactive components and having a medium calorific value are arranged on the periphery of the partial conical bodies (1, 2) of the burner near the burner outlet at a distance of approximately 30% of the nominal burner diameter. In addition, there is a fuel conduit (11) and a distributing passage (17), placed in the region of the nozzles (10), for the highly reactive fuel. The gaseous fuel (15) containing highly reactive components is injected at high velocity through the nozzles (10), which have a diameter which is smaller than 1% of the nominal burner diameter, into the zones of high air velocity and the penetration depth and the direction of the fuel jets are matched to one another in such a way that ignition only takes place behind the burner, after mixing has occurred.
摘要:
A method for adjusting a burner during the start-up phase in a furnace operated with recirculated flue gas (3), the furnace is subjected to a pre-flushing period prior to start-up. The furnace is started with a constant fuel amount (5), the fresh air (2) aspirated from the outside at first being reduced by means of a control. In the beginning, the stoichiometric or near-stoichiometric air balance for combustion is provided by recirculation of the fresh air (4) in the furnace. Following ignition of the burner, an increase of fresh air (2) from the outside will take place as a function of the diminishing fresh air (4) from the furnace. The diminishing fresh air (4) recirculated from the furnace is replaced by also recirculated flue gases (3) in such a way that at the end of the start-up phase only a combustion air mixture consisting of fresh air (2) from the outside and recirculated flue gases (3) is used.
摘要:
A firing installation includes a combustion space fed by premixing burners having combustion air inlet slots along the length of the burner bodies that create a tangentially directed inflow of combustion air. Fresh air guides are positioned along the inlet slots upstream to guide fresh air into the slots, and include an end plate having a plurality of perforations that act as air injection nozzles. Movement of fresh air through the nozzles creates a vacuum that draws combustion air from the combustion space into the inlet slots where it mixes with the fresh air to form a combustion gas mixture.
摘要:
In a burner which consists of a swirl generator (100) on the oncoming-flow side, the flow (40) formed herein is passed smoothly into a mixing section (220). This is done with the aid of a transition geometry which is present at the start of the mixing tube (220) and consists of transition passages (201) which cover sectors of the end face of the mixing section (220), in accordance with the number of sectional bodies of the swirl generator (100), and run helically in the direction of flow. On the outflow side of these transition passages (201), prefilming bores (21) pass through the mixing section (220), which prefilming bores (21) initiate an increase in the flow velocity along the tube wall. Adjoining the mixing section (220) is a combustion chamber (30) in which a backflow zone (50) forms in the region of the jump in cross-section between mixing section (220) and combustion chamber (30).
摘要:
In the case of a heat generator which essentially consists of a premix burner (100) and a flame tube (1), the hot gases (10) from the combustion in the premix burner (100) are fed into the flame tube (1), and there undergo staged post-combustion. This post-combustion takes place by means of a first post-combustion stage (11) and a second post-combustion stage (12). The air/fuel mixture (11a, 12a) is provided for each post-combustion stage (11, 12) in individual mixers (200, 300). These mixers are arranged axially with respect to the flame tube (1) and work in such a way that injection of the corresponding mixture (11a, 12a) makes it possible to obtain different combustion zones which extend in a staged sequence over the flame tube (1). By virtue of this staged post-combustion mode NO.sub.x emissions can be reduced by a factor of 5 compared to conventional techniques.
摘要:
In a burner (100) which essentially comprises at least two hollow, conical sectional bodies (101, 102) nested one inside the other in the direction of flow, the respective longitudinal symmetry axes (101b, 102b) of the sectional bodies (101, 102) run mutually offset in such a way that the adjacent walls of the sectional bodies (101, 102) form air-inlet slots (119, 120), tangential in their longitudinal extent, for a combustion-air flow (115) in the interior space (114) of the burner. The cross section of flow of these tangential air-inlet slots (119, 120) decreases in the direction of flow of the burner (100) in such a way that this has a positive effect on stabilization of the backflow zone (106) at the outlet of the burner (100).
摘要:
In a burner for operating an internal combustion engine, a combustion chamber of a gas turbine or firing equipment, which consists essentially of at least two hollow conical partial bodies (1, 2) positioned one upon the other in the flow direction, the ignition of the air/fuel mixture forming in the hollow conical space (14) takes place by means of ignition electrodes (24a, 24b, 25a, 25b) which are placed at a location where there is a low flow velocity of the combustion air (15). This achieves the effect that the flame tongues starting from the electrode ends (25a, 25b) of the ignition electrodes (24a, 24b) can feed a flame front (7) forming at the outlet from the burner continuously and along ordered paths, i.e. paths directed in the flow direction with slight swirl in consequence of the motion of the combustion air (15), so that a stable reverse flow zone (6) forms.