Abstract:
A copolyester resin having modified termini is disclosed, as well as the method for making and using that compound in subsequent reactions with epoxide curing compounds. The polymerization of the copolyester resin may include a compounding preparation stage for modifying the termini of the copolyester resin by reacting those end groups with an aromatic acid to alter the activation energy necessary to cure the modified copolyester resin with the epoxide compound upon mixing and heating of that mixture in a powder coating upon a substrate. The modified copolyester resin improves impact strength and leveling properties between 300.degree. and 450.degree. F., which is desirable for protection of the underlying substrate.
Abstract:
The present invention relates to a pneumatic rubber tire having an integral innerliner characterized by a top layer and a rubber laminate having at least three additional layers. At least two of the three layers are barrier layers and comprise a sulfur cured rubber composition containing, based on 100 parts by weight of rubber, 100 parts of an acrylonitrile/diene copolymer rubber having an acrylonitrile content ranging from about 30 to about 45 percent and from about 25 to about 150 parts by weight of a platy filler selected from the group consisting of talc, clay, mica or mixtures thereof. The thickness of each acrylonitrile/diene barrier layer ranges from about 25 microns to 380 microns. Between the two layers of acrylonitrile/diene copolymer is at least one non-barrier layer of a sulfur cured rubber selected from the group consisting of natural rubber, halogenated butyl rubber, butyl rubber, cis-1,4-polyisoprene, styrene-butadiene rubber, cis-1,4-polybutadiene, styrene/isoprene/butadiene rubber or mixtures thereof. The laminate may contain from about 3 to 100 individual layers.
Abstract:
A polyester resin having a low intrinsic viscosity and suitable for use as a powdered resin is modified by being capped with organic acids. The resins are made from the reaction of diesters with diols with up to 30 mole percent of the diester being replaced with various diacids. The polyester is capped following the condensation reaction stage, but before any finishing stage. The polyester resins have an acid number of from 1 to 100 and allow greater flexibility in the type of acid functionality than previously available.
Abstract:
A copolyester resin having modified termini is disclosed, as well as the method for making and using that compound in subsequent reactions with epoxide curing compounds. The polymerization of the copolyester resin may include a compounding preparation stage for modifying the termini of the copolyester resin by reacting those end groups with an aromatic acid to alter the activation energy necessary to cure the modified copolyester resin with the epoxide compound upon mixing and heating of that mixture in a powder coating upon a substrate. The modified copolyester resin improves impact strength and leveling properties between 300.degree. and 450.degree. F., which is desirable for protection of the underlying substrate.