摘要:
According to one embodiment, an acousto-optic modulator includes an acousto-optic medium and a piezoelectric transducer. The acousto-optic medium has a configuration of a hexahedron. The acousto-optic medium has surfaces D, E, F, G and H. The piezoelectric transducer is provided on a surface C of the acousto-optic medium. The surface D opposes the surface C and has respective four sides shared by the surfaces E, F, G and H. Four angles defined between the surface D and the surfaces E, F, G and H each is other than 90°. At least one of eight angles defined between each pair of the surfaces C, E, F, G and H is other than 90°. The each pair has one shared side.
摘要:
An operating method for stimulated Raman adiabatic passage to change probability amplitude in a three-level system including states of |0>, |1> and |e>, includes the following two steps. One is to direct a first laser beam and a second laser beam which have frequencies in the vicinity of resonance frequencies corresponding to energy differences between |0> and |e> and between |1> and |e>, respectively. The other is to change temporally two-photon detuning to be a difference between first detuning and second detuning. The first detuning is a difference between a first energy difference and a frequency of the first laser beam. The first energy difference is a difference between energy of |0> and energy of |e>. The second detuning is a difference between a second energy difference and a frequency of the second laser beam. The second energy difference is a difference between energy of |1> and energy of |e>.
摘要:
A quantum computer includes a unit including thin films A, B and C each containing a physical-system group A, B and C formed of physical systems A, B and C, the films A, B and C being alternately stacked in an order of A, B, C, A, . . . , each of the systems A, B and C having three-different-energy states |0>x, |1>x , |e>x, a quantum bit being expressed by a quantum-mechanical-superposition state of |0>x and |1>x , a light source generating light beams having angular frequencies ωA(E), ye, g, ωA(E), ye, e, ωx, ye, gg, ωx, ye, ge, ωx, ye, eg and ωx, ye, ee, ωA(E), ye, g, a unit controlling frequencies and intensities of the beams, and a unit measuring intensity of light emitted from or transmitted through physical-system group A(E) contained in a lowest one of the thin films A to detect a quantum state of the group A(E).
摘要:
A quantum computer includes: N (where N is an integer of at least 2) physical systems having five states |0>, |1>, |2>, |3> and |4> in which transitions between three lower states |0>, |1> and |2> and two upper states |3> and |4> are optically allowed; and an optical resonator in which the N physical systems are disposed. A transition frequency of a transition between |2> and |3> in all physical systems is equal to a resonant frequency of the optical resonator, a distribution width of a transition frequency between |3> and |4> is at least N times greater than a maximum value of transition frequencies between the three lower states, and light which is resonant with a transition between |0> and |4>, between |1> and |4>, or between |2> and |4> in a certain physical system is sufficiently off-resonant with all optical transitions in other physical systems.
摘要:
Quantum computer includes optical systems arranged in series each of the plurality of optical systems includes first half-wave plate, first polarizing beam splitter, first switching mirror, first photodetector, first polarization rotator, optical cavity which contains atom, second switching mirror, second photodetector, second polarization rotator, and high reflection mirror, first polarization beam splitter outputting third light beam received from first switching mirror or second switching mirror to adjacent one of optical systems, third switching mirrors each provided between adjacent two optical systems, each of third switching mirrors reflecting or transmitting light beam output from one of two optical systems, light sources each providing light beam to corresponding optical system, and measurement system which measures polarization of incoming light beam.
摘要:
In an operation of two qubit gate having failure information related to success or failure, by using a code to concatenate N-error-correcting code transversally executing a Pauli gate, a Hadamard gate and a CNOT gate, an error-correction is executed by an error-correcting teleportation, and the CNOT gate is executed to an encoded qubit by the error-correcting teleportation. In Bell measurement of the error-correcting teleportation, when a measurement result of non-encoded qubit is processed, by suitably defining failure information of the encoded qubit of level (l+1) from the failure information of encoded qubits of level l, the measurement result of the encoded qubit of each level is determined, and the failure information of the encoded qubit of each level is defined. As a result, a measurement result of a logical qubit as the encoded qubit of the highest level is determined.
摘要:
According to one embodiment, a quantum computer includes a crystal, an optical resonator, and a light source. A host crystal included in the crystal satisfying three conditions a first condition that maximum phonon energy of the host crystal is low, and so that a homogenous broadening of a 3F3(1) level of the Pr3+ ion resulting from relaxation due to phonon emission is smaller than respective hyperfine splits of a 3H4(1) level and the 3F3(1) level of the Pr3+ ion, a second condition that a site of the Pr3+ ion does not have inversion symmetry, and the Pr3+ ion has a Stark level in which the 3H4(1) level and the 3F3(1) level of the Pr3+ ion are not degenerate, and a third condition that each atom in the host crystal has no electronic magnetic moment.
摘要:
A method includes causing a common-resonator mode resonating with a transition between |2>i and |3>i that are coupled to each other by a transition having a homogenous broadening ΔEhomo greater than an energy difference between |0>i and |1>i, an energy difference between |2>i and |3>i being greater than ΔEhomo, transferring states of m quantum bits represented by |0>k and |1>k to |4>k and |5>k, respectively, when a quantum-bit-gate operation using the common-resonator mode is executed between the quantum bits represented by m physical systems k, |E(|u>k)−E(|v>k)|>ΔEhomo, u, vε{2, 3, 4, 5}, u≠v, executing adiabatic passage between the physical systems k, using light that resonates with a transition between |3>k and |4>k and a transition between |3>k and |5>k, executing the quantum-bit-gate operation between the quantum bits, and transferring, to |0>k and |1>k, the states represented by |4>k and |5>k, respectively.
摘要:
In an operation of two qubit gate having failure information related to success or failure, by using a code to concatenate N-error-correcting code transversally executing a Pauli gate, a Hadamard gate and a CNOT gate, an error-correction is executed by an error-correcting teleportation, and the CNOT gate is executed to an encoded qubit by the error-correcting teleportation. In Bell measurement of the error-correcting teleportation, when a measurement result of non-encoded qubit is processed, by suitably defining failure information of the encoded qubit of level (l+1) from the failure information of encoded qubits of level l, the measurement result of the encoded qubit of each level is determined, and the failure information of the encoded qubit of each level is defined. As a result, a measurement result of a logical qubit as the encoded qubit of the highest level is determined.
摘要:
A method of generating a single photon, includes preparing an optical resonator including a resonator mode of a resonance angular frequency ωc, preparing a material contained in the optical resonator, including a low energy state |g> and a high energy state |e>, and including a transition angular frequency ωa between |g>−|e> that is varied by an external field, applying, to the material, light of an angular frequency ωl different from the resonance angular frequency ωc, and applying a first external field to the material to vary the transition angular frequency ωa to resonate with the angular frequency ωl, such that a state of the material is changed to |e>, and then applying a second external field to the material to vary the transition angular frequency ωa to resonate with the resonance angular frequency ωc, such that the state of the material is restored to |g>.