摘要:
Expression levels of a combination of at least seven genes in a patient sample are measured to separate prostate cancer from normal. Patient samples may be selected from prostate tissue, blood, semen, and urine. A prediction score may be generated based on relative expression levels of the at least seven genes.
摘要:
Biomarkers are identified by analyzing gene expression data using support vector machines (SVM) to rank genes according to their ability to separate prostate cancer from normal tissue. Expression products of identified genes are detected in patient samples, including prostate tissue, serum, semen and urine, to screen, predict and monitor prostate cancer.
摘要:
Support vector machines are used to classify data contained within a structured dataset such as a plurality of signals generated by a spectral analyzer. The signals are pre-processed to ensure alignment of peaks across the spectra. Similarity measures are constructed to provide a basis for comparison of pairs of samples of the signal. A support vector machine is trained to discriminate between different classes of the samples. to identify the most predictive features within the spectra. In a preferred embodiment feature selection is performed to reduce the number of features that must be considered.
摘要:
A system and method for computer-assisted karyotyping includes a processor which receives a digitized image of metaphase chromosomes for processing in an image processing module and a classifier module. The image processing module may include a segmenting function for extracting individual chromosome images, a bend correcting function for straightening images of chromosomes that are bent or curved and a feature selection function for distinguishing between chromosome bands. The classifier module, which may be one or more trained kernel-based learning machines, receives the processed image and generates a classification of the image as normal or abnormal.
摘要:
A system and method for computer-assisted karyotyping includes a processor which receives a digitized image of metaphase chromosomes for processing in an image processing module and a classifier module. The image processing module may include a segmenting function for extracting individual chromosome images, a bend correcting function for straightening images of chromosomes that are bent or curved and a feature selection function for distinguishing between chromosome bands. The classifier module, which may be one or more trained kernel-based learning machines, receives the processed image and generates a classification of the image as normal or abnormal.
摘要:
A method is provided for unsupervised clustering of data to identify pattern similarities. A clustering algorithm randomly divides the data into k different subsets and measures the similarity between pairs of datapoints within the subsets, assigning a score to the pairs based on similarity, with the greatest similarity giving the highest correlation score. A distribution of the scores is plotted for each k. The highest value of k that has a distribution that remains concentrated near the highest correlation score corresponds to the number of classes having pattern similarities.
摘要:
Expression levels of a combination of at least seven genes in a patient sample are measured to separate prostate cancer from normal. Patient samples may be selected from prostate tissue, blood, semen, and urine. A prediction score may be generated based on relative expression levels of the at least seven genes.
摘要:
Biomarkers are identified by analyzing gene expression data using support vector machines (SVM) to rank genes according to their ability to separate prostate cancer from normal tissue. Expression products of identified genes are detected in patient samples, including prostate tissue, serum, semen and urine, to screen, predict and monitor prostate cancer.