Abstract:
A method for isolating Hepatitis A virus or Spring viremia of Carp virus. A virus probe is prepared by linking a magnetic bead-conjugated Protein G with an anti-HAV (Hepatitis A Virus) antibody or an anti-rhabdovirus antibody. The virus probe is contacted with a sample to be analyzed to form a virus probe-virus complex. The virus probe-virus complex is then isolated. It may specifically isolate Hepatitis A virus or Spring viremia of Carp virus from a sample mixed viruses.
Abstract:
Disclosed is a radiation shielding member having improved radiation absorption performance, including 80.0˜99.0 wt % of a polymer matrix or metal matrix and 1.0˜20.0 wt % of a radiation shielding material in the form of nano-particles having a size of 10˜900 nm as a result of pulverization, wherein the radiation shielding material is homogeneously dispersed in the matrix through powder mixing or melt mixing after treatment with a surfactant which is the same material as the matrix or which has high affinity for the matrix. A preparation method thereof is also provided. This radiation shielding member including the nano-particles as the shielding material further increases the collision probability of the shielding material with radiation, compared to conventional shielding members including micro-particles, thus reducing the mean free path of radiation in the shielding member, thereby exhibiting superior radiation shielding effects. At the same density, the shielding member has reduced thickness and volume and is thus lightweight. The porosity of the shielding member is minimized, thereby preventing the deterioration of shielding effects and properties of the shielding member and realizing applicability in spent fuel managing transport/storage environments and the like.
Abstract:
Disclosed is a radiation shielding member having improved radiation absorption performance, including 80.0˜99.0 wt % of a polymer matrix or metal matrix and 1.0˜20.0 wt % of a radiation shielding material in the form of nano-particles having a size of 10˜900 nm as a result of pulverization, wherein the radiation shielding material is homogeneously dispersed in the matrix through powder mixing or melt mixing after treatment with a surfactant which is the same material as the matrix or which has high affinity for the matrix. A preparation method thereof is also provided. This radiation shielding member including the nano-particles as the shielding material further increases the collision probability of the shielding material with radiation, compared to conventional shielding members including micro-particles, thus reducing the mean free path of radiation in the shielding member, thereby exhibiting superior radiation shielding effects. At the same density, the shielding member has reduced thickness and volume and is thus lightweight. The porosity of the shielding member is minimized, thereby preventing the deterioration of shielding effects and properties of the shielding member and realizing applicability in spent fuel managing transport/storage environments and the like.