Abstract:
A joining method between Fe-based steel and Ti/Ti-based alloys having a joint strength higher than those of base metals by using interlayers. The production of intermetallic compounds at a joint portion between Fe-based steel and Ti/Ti-based alloys can be prevented using interlayers, and strong interface diffusion bonding can be formed at interfaces between interlayers, thereby producing a high-strength joint. Accordingly, the present disclosure can be used to develop high-strength, high-functional advanced composite materials.
Abstract:
A water pollution sensor for detecting a heavy metal, the water pollution sensor including: a base member; a conductive layer formed at a portion of one of surfaces of the base member and consisting of a conductive material; an insulating layer formed on the conductive layer to enable a portion of the conductive layer to be exposed; and a bismuth layer formed on a portion of the exposed conductive layer and including bismuth powders.
Abstract:
Disclosed is a radiation shielding member having improved radiation absorption performance, including 80.0˜99.0 wt % of a polymer matrix or metal matrix and 1.0˜20.0 wt % of a radiation shielding material in the form of nano-particles having a size of 10˜900 nm as a result of pulverization, wherein the radiation shielding material is homogeneously dispersed in the matrix through powder mixing or melt mixing after treatment with a surfactant which is the same material as the matrix or which has high affinity for the matrix. A preparation method thereof is also provided. This radiation shielding member including the nano-particles as the shielding material further increases the collision probability of the shielding material with radiation, compared to conventional shielding members including micro-particles, thus reducing the mean free path of radiation in the shielding member, thereby exhibiting superior radiation shielding effects. At the same density, the shielding member has reduced thickness and volume and is thus lightweight. The porosity of the shielding member is minimized, thereby preventing the deterioration of shielding effects and properties of the shielding member and realizing applicability in spent fuel managing transport/storage environments and the like.
Abstract:
Disclosed is a method of manufacturing a metal oxide nano powder comprising preparing a first dispersed solution by adding a nano-sized metal powder to water and dispersing the metal powder within the water, performing a hydration reaction of the first dispersed solution at a temperature of about 30 to about 70° C. to generate a precipitation, and filtering and drying the precipitation to prepare a metal oxide powder. Also, disclosed is a metal oxide nano powder manufactured by the method described above, and having any one of a bar-form, a cube-form, and a fiber-form.
Abstract:
A joining method between Fe-based steel and Ti/Ti-based alloys having a joint strength higher than those of base metals by using interlayers. The production of intermetallic compounds at a joint portion between Fe-based steel and Ti/Ti-based alloys can be prevented using interlayers, and strong interface diffusion bonding can be formed at interfaces between interlayers, thereby producing a high-strength joint. Accordingly, the present disclosure can be used to develop high-strength, high-functional advanced composite materials.
Abstract:
Disclosed is a radiation shielding member having improved radiation absorption performance, including 80.0˜99.0 wt % of a polymer matrix or metal matrix and 1.0˜20.0 wt % of a radiation shielding material in the form of nano-particles having a size of 10˜900 nm as a result of pulverization, wherein the radiation shielding material is homogeneously dispersed in the matrix through powder mixing or melt mixing after treatment with a surfactant which is the same material as the matrix or which has high affinity for the matrix. A preparation method thereof is also provided. This radiation shielding member including the nano-particles as the shielding material further increases the collision probability of the shielding material with radiation, compared to conventional shielding members including micro-particles, thus reducing the mean free path of radiation in the shielding member, thereby exhibiting superior radiation shielding effects. At the same density, the shielding member has reduced thickness and volume and is thus lightweight. The porosity of the shielding member is minimized, thereby preventing the deterioration of shielding effects and properties of the shielding member and realizing applicability in spent fuel managing transport/storage environments and the like.
Abstract:
Disclosed is a method of manufacturing a metal oxide nano powder comprising preparing a first dispersed solution by adding a nano-sized metal powder to water and dispersing the metal powder within the water, performing a hydration reaction of the first dispersed solution at a temperature of about 30 to about 70° C. to generate a precipitation, and filtering and drying the precipitation to prepare a metal oxide powder. Also, disclosed is a metal oxide nano powder manufactured by the method described above, and having any one of a bar-form, a cube-form, and a fiber-form.
Abstract:
A mobile terminal includes a communication unit to detect a first device and to receive device information from the first detected device; a memory unit to store a search classification; a control unit to determine class and location information of the first detected device using device information received from the first detected device, and to control a search result to be displayed on a display unit. An information display method using a mobile terminal includes detecting devices within a reference proximity, receiving device information from a first detected device; storing a search classification in the mobile terminal; determining class information and location information of the first detected device, and comparing the class information with the stored search classification; and displaying a determination result.
Abstract:
A water pollution sensor for detecting a heavy metal, the water pollution sensor including: a base member; a conductive layer formed at a portion of one of surfaces of the base member and consisting of a conductive material; an insulating layer formed on the conductive layer to enable a portion of the conductive layer to be exposed; and a bismuth layer formed on a portion of the exposed conductive layer and including bismuth powders.