摘要:
The invention relates to a vehicle (1) provided with a frame (2) having a front frame part (3) and a rear frame part (4) which can tilt with respect to one another. The vehicle (1) comprises three or more wheels (7, 7′, 13), it being possible to rotate the front wheel (13) with respect to the steering column (18). In this case, a sensor (24) determines the angle of rotation between the front wheel (13) and the steering column (18) and, as a function of this angle of rotation, actuates the tilting means (9, 9′) of the vehicle. As a result of the consequent tilting of the front frame part (3) and as a consequence of the speed at which the vehicle (1) is travelling, the front wheel (13) and the tilting angle will automatically adopt the correct level for allowing the vehicle (1) to travel through the bend in a stable manner at the given speed. Controlling the tilt via the difference in angular rotation between the steering column (18), which is flexibly connected to the front wheel (13), and the front wheel (13), it is possible to control the tilt in a simple and robust manner.
摘要:
Self-balancing vehicle with at least three wheels resting on the ground, at least two of which wheels are arranged on either side of the center of gravity with respect to the longitudinal axis of the vehicle, and at least one of which wheels is directionally controllable. At least one section of the vehicle is tiltable about the longitudinal axis of the vehicle and a sensor for measuring the magnitude and/or the direction of the load, for the purpose of producing and/or maintaining a change in direction of the directionally controllable wheel during travel, and/or for measuring the magnitude and/or the direction of a change in direction of the directionally controllable wheel during travel, is connected to a control element for controlling the at least one directionally controllable wheel. A power-assisted tilt element is provided for tilting the vehicle section about the longitudinal axis of the vehicle, which tilt element is connected to the sensor, in order to produce a tilt as a function of the registration by the sensor.
摘要:
A rotary drive system includes a cylinder wall, a piston axially slidable along a longitudinal axis within the cylinder wall and a piston rod extending along the longitudinal axis and projecting at a drive side of the system axially beyond the cylinder wall. The piston rod is at the drive side attached to a carrier support member. A rotatable annular cam member extends at an axial cam position that is spaced at a distance from the drive side, coaxially around the cylinder wall. A carrier carries at a support side a pair of rollers engaging on opposed cam surfaces of the cam member, the carrier extending radially outwardly from the cylinder wall from the cam position to the carrier support member and being with a connecting end detachably connected to the carrier support member. The carrier includes an arm provided with a flexible section.
摘要:
A vehicle provided with at least three wheels, with a first frame part having at least two footboards, and a second frame part. The second frame part is connected to the first frame part in such a way that it can tilt about a tilting axis running in the longitudinal direction. The second frame part includes a control element and a driver's seat. A tilting member is connected to a first and second frame part, in order to exert a tilting force upon the second frame part on the basis of a control signal, a sensor being connected to the first frame part for measuring a force or moment exerted by a driver upon the first frame part and/or to determine a position of the rider relative to the footboard. The sensor is connected to the tilting member and feeds the control signal to the tilting member.
摘要:
A rotary drive system includes a cylinder wall, a piston axially slidable along a longitudinal axis within the cylinder wall and a piston rod extending along the longitudinal axis and projecting at a drive side of the system axially beyond the cylinder wall. The piston rod is at the drive side attached to a carrier support member. A rotatable annular cam member extends at an axial cam position that is spaced at a distance from the drive side, coaxially around the cylinder wall. A carrier carries at a support side a pair of rollers engaging on opposed cam surfaces of the cam member, the carrier extending radially outwardly from the cylinder wall from the cam position to the carrier support member and being with a connecting end detachably connected to the carrier support member. The carrier includes an arm provided with a flexible section.
摘要:
A tilting vehicle with a front frame section has a longitudinal axis, a driver's seat and one or more wheels that are able to turn about a front wheel steering axis located transversely to the longitudinal axis. The vehicle has a rear frame section with two wheels that is connected to the front frame section such that it can tilt. The vehicle can have a tilting device operated by the driver, for relative tilting of the front and rear frame sections. A sensor measures a force or movement on the front wheel for controlling the tilting device. The rear wheels can be turned about a rear wheel steering axis located transversely to the longitudinal axis or can be tilted about a rear wheel tilt axis located essentially in the direction of the longitudinal axis in order to prevent oscillations of the vehicle at relatively high speeds.
摘要:
A vehicle (1) provided with a frame having two frame sections (3,4) which are able to tilt with respect to one another. An opposite steer power transmitter (50) is connected to a steerable front wheel (13). The opposite steer power transmitter (50) is controlled as a function of the tilting moment on the frame sections (3,4). By this means, application of opposite steer is achieved, as a result of which the tilting section of the vehicle “drops into the bend” more rapidly and as a result of which increased maneuvrability is obtained. The opposite steer power transmitter (50) can be used on vehicles having an active tilting system with, for example, hydraulic tilting cylinders (9,9′), which are controlled by a sensor depending on the radius of the bend (24). The tilting moment generated by the tilting cylinders (9,9′) can optionally serve as a control signal for the opposite steer power transmitter (50).