Abstract:
An organic electroluminescence element comprising a substrate having provided thereon an anode for injecting holes, a cathode for injecting electrons, and at least one organic compound layer therebetween, wherein the organic compound layer contains at least one compound represented by formula (I), and at least one compound represented by formula (II), (III) or (IV) (definitions of formulas (I) to (IV) are described in the specification).
Abstract:
An organic thin-film electroluminescent (organic EL) element having an improved luminescent efficiency and improved stability is described, which comprises a substrate and, formed thereover, an anode for injecting holes, a cathode for injecting electrons, and at least one organic-compound layer interposed between the anode and the cathode, wherein the organic-compound layer comprises, for example, any of the following organic compounds.
Abstract:
The object of the present invention is to provide an organic thin film EL device that has an improved close adherence of a hole injection electrode to an organic thin film layer and a long life, maintaining uniform luminance and minimized performance deterioration over the lapse of time. The organic thin film EL device, which includes an electron injection electrode and a hole injection electrode with an organic thin film layer placed therebetween, has a part or the whole of the hole injection electrode formed of a carbon film. In addition, the carbon film is formed by a sputtering method.
Abstract:
An organic electroluminescent device comprising a plurality of first electrodes of transparent conductive film patterns formed on a transparent substrate; an organic thin film formed on the first electrodes; and a second electrode formed on the organic thin film, wherein a recess, which is an interval region between the first electrodes, is embedded with a photo resist. Therefore, even if the thickness of the first electrodes is increased, the occurrence of defective coverage at the edge portion of first electrodes can be prevented.
Abstract:
The object of the present invention is to provide an organic thin film EL device that has an improved close adherence of a hole injection electrode to an organic thin film layer and a long life, maintaining uniform luminance and minimized performance deterioration over the lapse of time. The organic thin film EL device, which includes an electron injection electrode and an hole injection electrode with an organic thin film layer placed therebetween, has a part or the whole of the hole injection electrode formed of a carbon film. In addition, the carbon film is formed by a sputtering method.
Abstract:
An organic thin-film electroluminescent display device comprising a substrate, hole injection electrodes, an organic thin film layer, electron injection electrodes, an electrode-driving IC for driving the electron injection electrodes and the electron injection electrodes and lead wires for connecting the hole injection electrodes and the electron injection electrodes to the electrode-driving IC. The lead wires each include a lead underlayer made of the same material of the hole injection electrode and a lead electroconductive layer formed on the lead underlayer and having a higher electroconductivity than that of the lead underlayer and or the electron injection electrodes each may include an underlayer for the electron injection electrode and an electroconductive layer for the electron injection electrode formed on the underlayer for the electron injection electrode and having a higher electroconductivity than that of the underlayer for the electron. The device injection electrode can prevent fluctuations in luminescence brightness due to different ohmic losses of lead wires connecting the hole injection electrodes and the electron injection electrodes to the electrode-driving IC and due to different electric resistances of electron injection electrodes.
Abstract:
The invention presents an organic electroluminescence element excellent in long-term durability and reliability, a manufacturing method excellent in mass producibility, and a display device using the organic electroluminescence element. Accordingly, to prevent growth of dark spots in the luminous layer by completely shutting off invasion of moisture or oxygen into an anode or an organic thin film layer, a shield material is adhered to an element by using low melting glass or low melting solder. To fuse the low melting glass or low melting solder used for this purposes, laser or ultrasonic wave is used. The surface of the element is sealed with a protective film in a film thickness of 3 microns to 30 microns, or a protective film composed of two-layer laminate film of insulating compound layer andmetal film. According to these inventions, a highly reliable organic electroluminescence element small in changes in the time course suchas growth of dark sports and lowering of luminance is obtained.