摘要:
A method for recognizing a three-dimensional objective in which a two-dimensional image is obtained from the same viewing point as a distance image obtained by picking up the objective in a three-dimensional space and the two-dimensional image is utilized to previously limit an existence zone of the objective under detection for the distance image and to perform objective detecting operation over the partial distance image in the limited zone, thereby realizing a sufficiently high speed detection of, in particular, the three-dimensional objective.
摘要:
In a control apparatus for an automatic transmission, it is configured to calculate a change amount (ΔNC estimation value) of an output rotational speed of the transmission (S10); calculate an average (I phase initial average G) of the change amount of the output rotational speed over a predetermined period of an initial inertia (I) phase of shifting; calculate an average (after-shift average G) of a vehicle acceleration after the completion of the shifting, assuming that the change amount of the output rotational speed indicates the vehicle acceleration G; calculate a difference (I phase initial G) between the average of the change amount of the output rotational speed and the average of the vehicle acceleration; incrementally and decrementally correct the desired value of the transmission torque of the frictional engaging element such that the calculated difference falls within a predetermined range; and control supply of hydraulic pressure to the frictional engaging element such that it becomes the corrected desired value (S14 to S20). With this, since the vehicle acceleration at shifting is estimated and evaluated and based thereon, variation in the transmission torque of the frictional engaging element, etc., is learned, it becomes possible to fully exploit the potential of the frictional engaging element, thereby improving a feel given to the vehicle occupant(s) at shifting.
摘要:
A method for recognizing a three-dimensional objective in which a two-dimensional image is obtained from the same viewing point as a distance image obtained by picking up the objective in a three-dimensional space and the two-dimensional image is utilized to previously limit an existence zone of the objective under detection for the distance image and to perform objective detecting operation over the partial distance image in the limited zone, thereby realizing a sufficiently high speed detection of, in particular, the three-dimensional objective.
摘要:
In a control apparatus for an automatic transmission, it is configured to calculate a change amount (ΔNC estimation value) of an output rotational speed of the transmission (S10); calculate an average (I phase initial average G) of the change amount of the output rotational speed over a predetermined period of an initial inertia (I) phase of shifting; calculate an average (after-shift average G) of a vehicle acceleration after the completion of the shifting, assuming that the change amount of the output rotational speed indicates the vehicle acceleration G; calculate a difference (I phase initial G) between the average of the change amount of the output rotational speed and the average of the vehicle acceleration; incrementally and decrementally correct the desired value of the transmission torque of the frictional engaging element such that the calculated difference falls within a predetermined range; and control supply of hydraulic pressure to the frictional engaging element such that it becomes the corrected desired value (S14 to S20). With this, since the vehicle acceleration at shifting is estimated and evaluated and based thereon, variation in the transmission torque of the frictional engaging element, etc., is learned, it becomes possible to fully exploit the potential of the frictional engaging element, thereby improving a feel given to the vehicle occupant(s) at shifting.
摘要:
A 3-dimensional object recognition method, by use of which three-dimensional position and posture of an object can be accurately recognized at high speed, comprises the steps of (A) taking a pair of first and second images for making a stereo image of the object; (B) detecting a two-dimensional feature of the object on each of the first and second images; (C) evaluating a degree of reliability of the result of the step (B) by comparing with a model data of the object; (D) making a correspondence of the two-dimensional feature between the first and second images according to a stereoscopic measurement principle; (E) evaluating a degree of reliability of the result of the step (D) by comparing the two-dimensional feature detected on the first image with the corresponding two-dimensional feature detected on the second image; (F) recognizing the three-dimensional position and posture of the object according to information in three dimensions of the two-dimensional feature obtained by the correspondence; and (G) evaluating a degree of reliability of the recognized three-dimensional position and posture. It is preferred to use the 3-dimensional object recognition method to a bin-picking system for picking up an article from a bin, in which a plurality of articles are heaped up in confusion, and carrying the picked-up article to a required position.