Abstract:
A method for measuring incident light employing a simple semiconductor structure provided with a single electron-capturing section corresponding to incident light, and a sensor having a spectroscopic mechanism employing the same are provided. A spectroscopic sensor includes a semiconductor substrate (1), a first diffusion layer (2) provided on the semiconductor substrate (1), a second diffusion layer (3)provided at a part of the first diffusion layer (2), and an electrode (7)film provided on the first diffusion layer (2) with an insulating film (4) provided therebetween, the electrode film (7) transmitting the incident light and being applied with a gate voltage. In the spectroscopic sensor, the gate voltage is varied, the depth (position) for capturing electrons generated in the first diffusion layer (2) by the incident light is varied so as to correspond to the gate voltage, and a current indicating the quantity of the electrons is measured. Thereby, wavelength and intensity of the incident light are measured.
Abstract:
A high frequency switching component for being connected to a transmission circuit, a reception circuit, and an antenna to be used for switching to either a state in which the transmission circuit is connected to the antenna, or a state in which the reception circuit is connected to the antenna, comprising: a multilayer circuit board, on which there is formed a circuit including: a transmission circuit terminal to be connected to the transmission circuit; a reception circuit terminal to be connected to the reception circuit; an antenna terminal to be connected to be the antenna; a ground terminal; a first diode whose anode is connected to the transmission circuit terminal and the cathode thereof is connected to the antenna terminal; a second diode whose anode is connected to the reception circuit terminal and the cathode thereof is connected to the ground terminal; a signal line for connecting the transmission circuit terminal, the reception circuit terminal, and the antenna terminal via the first diode; and an inductor or an LC filter disposed between the signal line and the ground terminal to reduce noise on the signal line; in which the transmission circuit terminal, the reception circuit terminal, the antenna terminal, the ground terminal, the first diode, and the second diode are disposed on a surface of the multilayer circuit board; at least a part of the signal line being disposed inside the multilayer circuit board; and the inductor being disposed either inside or on the surface of the multilayer circuit board.
Abstract:
The invention provides a composite high frequency component constituting a part of a microwave circuit having plural signal paths corresponding to their respective frequencies, comprising: a diplexer for coupling transmitting signals from the plural signal paths for transmission and distributing receiving signals into said plural signal paths for reception; plural high frequency switches for separating the plural signal paths into a transmission section and a reception section, respectively; plural filters introduced in the signal paths; said diplexer, said high frequency switch, and said filters being integrated into a ceramic multi-layer substrate formed by lamination of plural ceramic sheet layers. According to the above described composite high frequency component, the diplexer, the high frequency switches, and the filters which constitute the composite high frequency component are integrated into the ceramic multi-layer substrate formed by lamination of plural ceramic sheet layers. Thus, the matching and adjustment between the diplexer and the high frequency switches can be easily performed. It is unnecessary to provide a matching circuit for matching and adjusting the diplexer and the high frequency switches, and moreover, the high frequency switches and the filters.
Abstract:
A composite high frequency component and a mobile communication apparatus incorporating the same which needs no matching circuits and can easily be miniaturized. The composite high frequency component is constituted of a diplexer, high frequency switches, high frequency filters, and surface acoustic wave filters. The diplexer is formed by first inductors and first capacitors. The high frequency switches are formed by diodes, second inductors, and second capacitors. The high frequency filters are formed by third inductors and third capacitors.
Abstract:
The invention provides a composite high frequency component constituting a part of a microwave circuit having plural signal paths corresponding to their respective frequencies, comprising: a diplexer for coupling transmitting signals from the plural signal paths for transmission and distributing receiving signals into said plural signal paths for reception; plural high frequency switches for separating the plural signal paths into a transmission section and a reception section, respectively; plural filters introduced in the signal paths; said diplexer, said high frequency switch, and said filters being integrated into a ceramic multi-layer substrate formed by lamination of plural ceramic sheet layers. According to the above described composite high frequency component, the diplexer, the high frequency switches, and the filters which constitute the composite high frequency component are integrated into the ceramic multi-layer substrate formed by lamination of plural ceramic sheet layers. Thus, the matching and adjustment between the diplexer and the high frequency switches can be easily performed. It is unnecessary to provide a matching circuit for matching and adjusting the diplexer and the high frequency switches, and moreover, the high frequency switches and the filters.