摘要:
An arc welding apparatus includes a main power supply circuit for outputting an arc current, a control circuit for controlling the main power supply circuit, and a high-frequency voltage generating circuit for generating a high-frequency voltage. When an operation switch is turned on for a first time since the apparatus is powered on, the control circuit activates the main power supply circuit to output a high voltage, and the high-frequency voltage generating circuit to generate a high-frequency voltage. With the high voltage superimposed on the high-frequency voltage, the control circuit passes a welding arc current through a torch and a base material. The switch is then turned off, and the control circuit passes a pilot arc current through the torch and the base material. The switch is turned on again, and the control circuit activates the main power supply circuit to output a high voltage, thereby allowing smooth arc transition.
摘要:
A printing ink is disclosed containing: an emulsion stabilizer having a water tolerance value of between more than about 1.0 and equal or less than about 11.0 and water as a dispersed phase, wherein said emulsion stabilizer stabilizes the water to form a stabilized emulsion printing ink.
摘要:
An input-side rectifier (4), a smoothing capacitor (6), an inverter (8), a transformer (10) and an output-side rectifier (12) operate together to convert an AC voltage supplied from an AC power supply to a DC voltage. The DC voltage is coupled through a DC-to-AC converter (16) to a workpiece (18) and a torch (20). An auxiliary voltage supply (28) supplies the workpiece (18) and the torch (20) with a negative voltage for a short time following the transition of the AC voltage supplied to the workpiece (18) and the torch (20) from positive to negative. The negative voltage has a negative peak value larger than the negative peak value of the AC voltage supplied to the workpiece (18) and the torch (20), and rapidly changes from the negative peak value. The auxiliary voltage supply (28) produces a DC voltage having a negative peak value larger than the negative peak value of the AC voltage supplied to the workpiece (18) and the torch (20), by means of a transformer (30), a rectifier (32) and a smoothing capacitor (36). The smoothing capacitor (36) is coupled to the workpiece (18) and the torch (20) through a transistor (38) and a current-limiting resistor (40). A differentiating circuit (46) is coupled in parallel with the current-limiting resistor (40), and includes a resistor (48) having a smaller resistance value than the current-limiting resistor (40).
摘要:
Welding conditions are set for a power supply apparatus for use with a welding machine, using a control panel unit (96). A memory (105) stores therein welding conditions as set through the control unit (96), and holds the set welding conditions after turning off of a main power supply switch (1) of the power supply apparatus. Upon turning on of the main power switch (1) for starting welding, the welding conditions stored and held in the memory (105) are read out and set in the power supply apparatus.
摘要:
An IGBT (16) intermittently interrupts a current from a positive terminal (12P) of a DC supply (2) to a workpiece (24). An IGBT (20) intermittently interrupts a current from a negative terminal (12N) of the DC supply (2) to the workpiece (24). A control circuit (32) and a drive signal generating circuit (34) ON-OFF control the IGBTs (16, 20). The control circuit (32) causes the drive signal generating circuit (34) to control the IGBTs (16, 20) in such a manner as to provide a repetition of a cycle consisting of an AC period during which the IGBTs (16, 20) are alternately rendered conductive, and a DC period following the AC period during which the IGBT (16) is rendered continuously conductive. Further, the control circuit (32) and the drive signal generating circuit (34) simultaneously render the IGBT (16) and the IGBT (20) nonconductive and conductive, respectively, at least once during the DC period, and, thereafter, simultaneously render the IGBT (16) and the IGBT (20) conductive and nonconductive, respectively.
摘要:
Metallic coils sheets (34, 36, 38) are planar and include center windows (34a, 36a, 38a). Slits (34b, 36b, 38b) extend outward through the respective sheets from the windows. Connection terminals (34c, 34d; 36c, 36d; 38c, 38d) are provided on the sheets at locations facing across the respective slits. The metallic coil sheets are stacked, and adjacent ones of the stacked metallic coil sheets are electrically connected by means of the connection terminals. A core (60, 62) is disposed in the windows of the stacked metallic coil sheets. The metallic coil sheets are individually covered with an insulating coating.
摘要:
A power supply apparatus has chassis (42, 44) mounted on opposing surfaces of a heat sink (40). Printed circuit boards (46, 48) are disposed outward of the chassis (42, 44) and detachably secured to the chassis (42, 44). Semiconductor modules (4, 16a, 16b, 32) are mounted on the respective surfaces of the heat sink (40) facing toward the printed circuit boards (46, 48) and extend through the chassis (42, 44). The semiconductor modules (4, 16a, 16b, 32) are electrically connected to the printed circuit boards (46, 48) to form a power supply circuit.
摘要:
A high-frequency large current handling transformer includes a stack of plural metal planar coil members with a window formed in a center portion of each of the planar coil member. A slit extends outward from the window in each planar coil member. First and second terminals are provided for each planar coil member at locations on opposite sides of the slit. An insulating sheet having a window formed in its center portion is disposed between adjacent ones of the planar coil members. Some of the planar coil members are connected in series to provide a higher-voltage side coil, and the remaining planar coil members are connected in parallel to provide a lower-voltage side coil. An 8-shaped high-frequency core is operatively combined with the coils.
摘要:
One of commercial AC voltages is coupled to power supply terminals from one of commercial AC power supplies. The AC power supplies belong to either a first group providing higher voltages or a second group providing lower voltages. A rectifier rectifies the AC voltage applied to the power supply terminals, and a rectified voltage is developed between two rectifier output terminals. A switching unit operates to connect voltage-boosting converters selectively in series and in parallel between the rectifier output terminals. Inverters are connected in the output sides of and in association with the respective voltage-boosting converters for converting DC voltages from the associated voltage-boosting converters to high-frequency voltages. The high-frequency voltages are voltage-transformed by associated voltage-transformers, and the voltage-transformed high-frequency voltages are converted into a DC voltage by a rectifier circuit and a reactor. The DC voltage is developed between output terminals of the apparatus. A switching control unit controls the switching unit so as to connect the voltage-boosting converters in series between the rectifier output terminals when a commercial AC power supply of the first group is connected to the power supply terminals, while connecting the voltage-boosting converters in parallel between the rectifier output terminals when a commercial AC power supply of the second group is connected to the power supply terminals.