摘要:
A display substrate includes a transparent substrate, a pixel layer, an organic insulating layer, a transparent electrode and a reflective electrode. The pixel layer is formed on the transparent substrate, and includes a plurality of pixel parts. Each of the pixel parts includes a transmission region and a reflection region. The organic insulating layer is formed on the pixel layer. The transparent electrode is formed on the organic insulating layer corresponding to each of the pixel parts. The reflective electrode is formed on the transparent electrode corresponding to the reflection region. The reflective electrode includes a silver alloy that includes silver (Ag) and impurities having a low solubility in the silver.
摘要:
A display substrate includes a transparent substrate, a pixel layer, an organic insulating layer, a transparent electrode and a reflective electrode. The pixel layer is formed on the transparent substrate, and includes a plurality of pixel parts. Each of the pixel parts includes a transmission region and a reflection region. The organic insulating layer is formed on the pixel layer. The transparent electrode is formed on the organic insulating layer corresponding to each of the pixel parts. The reflective electrode is formed on the transparent electrode corresponding to the reflection region. The reflective electrode includes a silver alloy that includes silver (Ag) and impurities having a low solubility in the silver.
摘要:
A display substrate includes a plurality of gate wirings, a plurality of source wirings, a plurality of pixel portions, an electrical short pad part and a short element. The electrical short pad part is formed in a peripheral area surrounding the display area and formed from at least one of the gate metallic layer and the source metallic layer to receive a common voltage. The short element makes contact with the electrical short pad part and has electric conductivity. The electrical short pad part includes a first metallic layer and a second metallic layer in sequence, and the second metallic layer has greater ionization energy than the first metallic layer. The electrical short pad part is exposed onto the surface of the display substrate. Accordingly, an extra cover electrode for preventing the electrical short pad part from corrosion may be omitted, so that static electricity is prevented from being applied into the display substrate.
摘要:
A display device includes silver-molybdenum alloy electrodes having high reflectivity despite annealing temperatures. The display may have a first display substrate, a second display substrate and a liquid crystal layer. The first display substrate includes signal-applying modules (e.g., TFTs) disposed on a first substrate each including an output terminal configured to output a data signal, a patterned insulation layer having contact holes that expose the output terminals, and silver-molybdenum alloy electrodes (made of silver and molybdenum) electrically connected to the output terminals. The silver-molybdenum alloy electrode is employed in the display device, thereby increasing reflectivity of the display device and improving display quality of an image displayed by the display device.
摘要:
A method of manufacturing an LCD includes forming a gate line, depositing a gate insulating layer on the substrate, forming a semiconductor layer on the gate insulating layer, forming a data line and a drain electrode on the semiconductor layer, and forming a pixel electrode connected to the drain electrode including a transparent electrode and a reflecting electrode disposed on a portion of the transparent electrode. The lower layer of the reflecting electrode includes an Ag alloy containing Mo, and the upper layer of the reflecting electrode includes a transparent conductive material such as IZO or ITO. The refraction index of second layer may be larger than that of the LC layer, and light reflected on the surface of the second layer and light reflected on the surface of the first layer may constructively interfere with each other.
摘要:
A display device includes silver-molybdenum alloy electrodes having high reflectivity despite annealing temperatures. The display may have a first display substrate, a second display substrate and a liquid crystal layer. The first display substrate includes signal-applying modules (e.g., TFTs) disposed on a first substrate each including an output terminal configured to output a data signal, a patterned insulation layer having contact holes that expose the output terminals, and silver-molybdenum alloy electrodes (made of silver and molybdenum) electrically connected to the output terminals. The silver-molybdenum alloy electrode is employed in the display device, thereby increasing reflectivity of the display device and improving display quality of an image displayed by the display device.