Abstract:
A switching matrix has a first number of inputs and a second number of outputs as well as a conductor arrangement and controllable switching elements by means of which the inputs can be connected with the outputs. The controllable switching elements are fashioned such that at least two independent control signals are required to trigger a switching event.
Abstract:
A generation device for a magnetic resonance excitation signal has a signal divider that divides an input signal supplied to it via an input element into at least two sub-signals and supplies them to amplification stages. The amplification stages amplify the respective sub-signals to produce signals and supply the amplified signals to a signal combiner that combines them to form an aggregate signal, which is made externally available via an output element. Sensor devices that precede the signal divider and the signal combiner, acquire a reference signal that corresponds to the input signal and actual signals that correspond to the amplified signals and supply them to a control device. The control device acts on at least one of the amplification stages to cause the amplified signals to exhibit a predetermined amplitude ratio and a predetermined phase relation relative to one another.
Abstract:
In a transmission arrangement for a magnetic resonance apparatus, a high-frequency input signal, via an input terminal is supplied to a high-frequency power amplifier. The amplifier amplifies the input signal with from a high-frequency output signal and supplies it to an antenna arrangement that emits it as a magnetic resonance excitation signal. Directional couplers are respectively connected between the input terminal and the amplifier and between the amplifier and the antenna arrangement. The acquired signals are supplied to an amplitude controller that drives an amplitude regulator preceding the high-frequency power amplifier.