Abstract:
In one embodiment of the present invention, a planning apparatus and method for earthmoving operations with a front-end loader, such as loading a bucket with material and unloading the material in a receptacle, is disclosed including multi-level processing for planning the operation. One of the processing levels is a coarse-level planner that uses geometry of the site and heuristics specified by expert operators to find an optimal area from which to remove material. The next level involves searching the area for an exact starting location. This is accomplished by choosing among candidate excavations for the site with the optimum performance criteria including maximum amount of material protruding from the pile, minimum side loading of the bucket, and minimum distance from the loading receptacle. Other performance criteria that are evaluated for the candidate excavation include whether the front-end loader is capable of making the turns required by a candidate trajectory, and whether obstacles are in the path of the trajectory.
Abstract:
A method is disclosed for monitoring a work implement of a digging machine positioned at an excavation site during an excavating work cycle, the work implement including a bucket for capturing material, the method comprising the steps of using a representation of the shape of the excavation site and estimating the volume of material captured by the bucket based on the actual trajectory of the bucket and the shape of the excavation site to determine when the bucket has reached a desired capacity.
Abstract:
In one embodiment of the present invention, a planning system and method for earthmoving operations such as digging a foundation or leveling a mound of soil is disclosed including three different levels of processing for planning the excavation. One of the processing levels is a coarse-level planner that uses geometry of the site and the goal configuration of the terrain to divide the excavation area into a grid-like pattern of smaller excavation regions and to determine the boundaries and sequence of excavation for each region. The next level is a refined planner wherein each excavation region is, in order of the excavation sequence provided by the coarse planner, searched for the optimum excavation that can be executed. This is accomplished by choosing candidate excavations that meet geometric constraints of the machine and that are approximately within the boundaries of the region being excavated. The refined planner evaluates the candidate excavations using a simulated model of a closed loop controller and by optimizing a cost function based on performance criteria such as volume of material excavated, energy expended, and time, to determine the optimal location and orientation of a bucket of an excavator to begin excavating the region. The third level of the excavation planner is a control scheme wherein the selected excavation is executed by a closed loop controller that controls execution of a commanded excavation trajectory by monitoring forces exerted on a bucket, stick, and boom on an excavating machine.
Abstract:
In the operation of work machines it has been a problem to control the work machine's velocity aspects such as velocity, acceleration, deceleration and jerk because of the plurality of operator interfaces required for such control. The present invention provides an operator interface system for a work machine in which a first pedal is displaceable from a neutral position, and a sensor is operatively coupled with the first pedal and is operable to output a displacement signal corresponding to a location of the first pedal. An electronic controller receives the displacement signal and provides a predetermined control to a velocity aspect of the work machine in response to the displacement signal.