Abstract:
An acceleration/deceleration control method of a CNC machine tool includes receiving an acceleration/deceleration timing signal and a velocity signal. The acceleration/deceleration timing signal is calculated to acquire a plurality of different first weight values and different second weight values by a first formula and a second formula. A velocity variation of the velocity signal is determined to be zero, positive or negative. The velocity signal is acquired, if the velocity variation is zero. A plurality of acceleration signals are acquired by the velocity signal multiplying each of the first weight values, if the velocity variable is positive. A plurality of deceleration signals are acquired by the velocity signal multiplying each of the second weight values, if the velocity variation is negative. The velocity signal, the acceleration signal and the deceleration signal are converted into a first driving signal, a second driving signal and a third driving signal.
Abstract:
An acceleration control apparatus for servo control of a computer numerical control (CNC) machine comprises a digital filter. The digital filter is obtained by selecting a cutoff frequency of an analog filter and using a pole-zero matched method to transform an analog filter. The low-pass digital filter includes a signal input unit, a signal input register unit, a signal operation unit, a signal output unit, and a signal output register unit.
Abstract:
A manual pulse generator that includes a main body, a magnification selector, an axis selector, and an input device is disclosed. The input device is disposed on an upper surface of the main body. The input device includes a control chip and a panel with many touch-sensors electronically connected to the control chip. When the touch-sensors are touched, the touch-sensors generate signals to the control chip. The control chip is configured to generate pulse signals according to the signals received from the touch-sensors to control a servo motor of a CNC machine.
Abstract:
A hole machining method includes drilling two holes are drilled at opposite ends of a drilling area as a start point and an end point. The number of holes between the start point and the end point is determined. A dividing point and a number of holes L are determined according to determined equations. Holes are drilled in the dividing point, and between the start point and the dividing point according to the determined equations.
Abstract:
The invention relates to a wireless manual pulse generator that includes a central processing unit, a magnification selector, a pulse generator, an axis selector, and a wireless transmission module. The magnification selector is electronically connected to the central processing unit. The pulse generator is electronically connected to the magnification selector. The axis selector is electronically connected to the central processing unit. The wireless transmission module is electronically connected to the central processing unit. The central processing unit is configured to process a signal generated from the magnification selector or the axis selector. The wireless transmission module is configured to deliver the signal processed by the central processing unit to a CNC machine via wireless communication.
Abstract:
A hole machining method includes drilling two holes are drilled at opposite ends of a drilling area as a start point and an end point. The number of holes between the start point and the end point is determined. A dividing point and a number of holes L are determined according to determined equations. Holes are drilled in the dividing point, and between the start point and the dividing point according to the determined equations.
Abstract:
An acceleration/deceleration control method of a CNC machine tool includes receiving an acceleration/deceleration timing signal and a velocity signal. The acceleration/deceleration timing signal is calculated to acquire a plurality of different first weight values and different second weight values by a first formula and a second formula. A velocity variation of the velocity signal is determined to be zero, positive or negative. The velocity signal is acquired, if the velocity variation is zero. A plurality of acceleration signals are acquired by the velocity signal multiplying each of the first weight values, if the velocity variable is positive. A plurality of deceleration signals are acquired by the velocity signal multiplying each of the second weight values, if the velocity variation is negative. The velocity signal, the acceleration signal and the deceleration signal are converted into a first driving signal, a second driving signal and a third driving signal.
Abstract:
A manual pulse generator that includes a main body, a magnification selector, an axis selector, and an input device is disclosed. The input device is disposed on an upper surface of the main body. The input device includes a control chip and a panel with many touch-sensors electronically connected to the control chip. When the touch-sensors are touched, the touch-sensors generate signals to the control chip. The control chip is configured to generate pulse signals according to the signals received from the touch-sensors to control a servo motor of a CNC machine.
Abstract:
A cutting apparatus includes a cutting tool program control module configured for controlling a number of cutting tools to cut an element. The cutting tool program control module includes a cutting tool program storing unit, a cutting tool program selecting unit, and a cutting tool program executing unit. The cutting tool program storing unit stores a number of cutting tool programs for controlling the number of cutting tools accordingly. The cutting tool program selecting unit selects one or more cutting tool programs and stores corresponding selecting information according to the selected cutting tool programs. The cutting tool program executing unit executes the selected cutting tool programs according to the selecting information stored in the cutting tool program selecting unit.
Abstract:
An acceleration/deceleration control apparatus for a computer numerical control machine tool includes an interpolator, a motion-transforming unit, and a drive transforming unit. The interpolator receives a velocity signal and outputs a pulse velocity signal. The motion unit is connected to the interpolator and includes an operation filter. The operation filter includes a plurality of different weight values and a plurality of registers corresponding to the numbers of the weights to calculate the pulse velocity signal to an acceleration/deceleration pulse velocity signal by a first function. The weight values are derived by a second function corresponding to the shape of the acceleration/deceleration pulse velocity signal. The driving unit is connected to the motion unit and transforms the acceleration/deceleration pulse velocity signal to a driving signal to drive a motor.