Abstract:
A device for the ablation of tissue for use with the fingers of a human hand and a radio frequency power supply and controller providing a source of radio frequency energy and controls for controlling the application of radio frequency energy to the device comprising a handle sized so that is adapted to be grasped and supported by the human hand and having proximal and distal extremities. A single conductive needle formed of a conducting material is disposed in the distal extremity of the handle. An edge card is mounted in the handle and has edge mounted contacts with circuitry connected thereto. An edge mount board connector is mounted in the handle and is removably secured to the edge mounted contacts of the edge card. A cable is connected to the edge mount connector and extends from the proximal extremity of the handle and is adapted to be coupled to the radiofrequency power supply and controller. A second printed circuit board is mounted in the handle in a spaced-apart position from the edge card. A flex cable having conductive leads carried thereby extends between the edge card and the printed circuit board and is physically and electrically connected to the edge card. The proximal extremity of the needle is secured to the printed circuit board and makes electrical connections therewith.
Abstract:
A device for the ablation of tissue for use with the human hand and a radio frequency power supply and controller providing a source of radio frequency energy and a control for controlling the application of radio frequency energy to the device. The device includes a handle sized so that is adapted to be grasped by the human hand and has proximal and distal extremities. A needle formed of a conducting material has proximal and distal extremities. The proximal extremity of the needle is mounted on the distal extremity of the handle so that it is insulated from the handle. Conductors are carried by the handle and are connected to the needle and extend from the handle and are coupled to the radio frequency power supply and controller for supplying radio frequency energy to the needle. A temperature sensor is carried by the handle and is adapted to be coupled to the radio frequency power supply and controller for sensing the application of radio frequency energy to the tissue for controlling the application of radio frequency energy to the needle.
Abstract:
The invention features devices and methods for treatment of pain. The drug delivery device is a drug delivery system adapted for whole implantation in a subject and to provide pain relief by delivery of fentanyl or a fentanyl congener (e.g., sufentanil) over a protracted period of time (e.g., at least 3 days or more than 3 days). The device comprises a housing defining a reservoir that contains a drug formulation, a pump operatively connected to the housing so as to facilitate movement of drug out of the reservoir and out of the device, and a thermal expansion element which defines a flow pathway comprising a thermal expansion channel to accommodate thermal expansion of formulation in the reservoir. The device can further comprise a valve positioned within the flow pathway so as to prevent movement of drug out of the reservoir prior to use.
Abstract:
Implantable delivery devices (1) for accurately controlling release of an agent therefrom and for preventing release of the agent during storage, prior to use. The devices include a reservoir (3) for storing the agent, a driving means for driving the agent from the reservoir (3) and a valving and control mechanism (10) which is positively actuatable between a closed configuration and an open configuration.
Abstract:
The invention features devices and methods for treatment of pain. The drug delivery device is a drug delivery system adapted for whole implantation in a subject and to provide pain relief by delivery of fentanyl or a fentanyl congener (e.g., sufentanil) over a protracted period of time (e.g., at least 3 days or more than 3 days). The device comprises a housing defining a reservoir that contains a drug formulation, a pump operatively connected to the housing so as to facilitate movement of drug out of the reservoir and out of the device, and a thermal expansion element which defines a flow pathway comprising a thermal expansion channel to accommodate thermal expansion of formulation in the reservoir. The device can further comprise a valve positioned within the flow pathway so as to prevent movement of drug out of the reservoir prior to use.
Abstract:
Systems and methods are described for a wire based temperature sensing electrode for surgical procedures. A temperature sensing energy delivery device includes an elongated member having a groove formed in at least portion of the elongated member; and a first temperature sensor mechanically connected to the elongated member, the first temperature sensor including a first temperature sensor lead that is routed along the groove. The systems and methods provide advantages in that the wire based temperature sensing electrode for surgical procedures can simultaneously accommodate a temperature sensor and associated leads, exhibit sufficient strength without bulk, and be provided at lower cost.
Abstract:
Systems and methods are described for a wire based temperature sensing electrode for surgical procedures. A temperature sensing energy delivery device includes an elongated member having a groove formed in at least portion of the elongated member; and a first temperature sensor mechanically connected to the elongated member, the first temperature sensor including a first temperature sensor lead that is routed along the groove. The systems and methods provide advantages in that the wire based temperature sensing electrode for surgical procedures can simultaneously accommodate a temperature sensor and associated leads, exhibit sufficient strength without bulk, and be provided at lower cost.