Abstract:
A method for calculating a fluid parameter of a fluid flowing through a vibratory flow meter is provided. The method comprises vibrating the flow meter at one or more frequencies and receiving a vibrational response. The method further comprises generating a first fluid property and generating at least a second fluid property. The method further comprises calculating a fluid parameter based on the first fluid property and the at least second fluid property.
Abstract:
A vibratory flow meter (100) for correcting for entrained gas in a flow material is provided. The vibratory flow meter (100) comprises a flow meter assembly (10) configured to generate a vibrational response for the flow material, a bubble size sensor (50) configured to generate a bubble measurement signal for the flow material, and meter electronics (20) coupled to the flow meter assembly (10) and to the bubble size sensor (50). The meter electronics (20) is configured to receive the vibrational response and the bubble measurement signal, determine a bubble size of bubbles in the flow material using at least the bubble measurement signal, determine one or more flow characteristics of the flow material using at least the vibrational response and the bubble size.
Abstract:
A method for validating a flow calibration factor of a flow meter is provided according to an embodiment of the invention. The method for validating a flow calibration factor of a flow meter includes determining an initial flexural stiffness of a component of the flow meter. The method for validating a flow calibration factor of a flow meter includes determining a current flexural stiffness of the component. The method for validating a flow calibration factor of a flow meter further includes comparing the initial flexural stiffness to the current flexural stiffness. The method for validating a flow calibration factor of a flow meter further includes detecting a calibration error condition responsive to comparing the initial flexural stiffness to the current flexural stiffness.
Abstract:
A vibratory flow meter (5) for measuring flow characteristics of a three phase flow is provided according to the invention. The vibratory flow meter (5) includes a meter assembly (10) including pickoff sensors (105, 105′) and meter electronics (20) coupled to the pickoff sensors (105, 105′). The meter electronics (20) is configured to receive a vibrational response from the pickoff sensors (105, 105), generate a first density measurement of the three phase flow using a first frequency component of the vibrational response, and generate at least a second density measurement of the three phase flow using at least a second frequency component of the vibrational response. The at least second frequency component is a different frequency than the first frequency component. The meter electronics (20) is further configured to determine one or more flow characteristics from the first density measurement and the at least second density measurement.
Abstract:
A method and apparatus is disclosed that determines the time delay (202) between the actual flow and the measured flow in a flow meter. The time delay is used to shift the flow measured by the flow meter to correspond to the actual flow measured by a prover or calibration system. In this way an accurate comparison is made between the flow measured by the flow meter and the flow provided by the prover.
Abstract:
A compact vibratory flowmeter (200) for measuring flow characteristics of a multi-phase flow material at a flow material pressure of greater than about 10 pounds-per-square-inch (psi) is provided according to an embodiment of the invention. The compact vibratory flowmeter (200) includes one or more flow conduits (301), at least two pickoff sensors (308), and a driver (309). The compact vibratory flowmeter (200) further includes a maximum water drive frequency in the one or more flow conduits (301) that is less than about 250 Hertz (Hz) and an aspect ratio (L/H) of the one or more flow conduits (301) that is greater than about 2.5. A height-to-bore ratio (H/B) of the one or more flow conduits (301) is less than about 10 and a bowed flow conduit geometry includes end bend angles θ of between about 120 degrees and about 170 degrees.
Abstract:
The present invention relates to a method of reducing heat loss from a non-human animal. The method can include the steps of providing a cover having a first side with a reflective material sized and configured for covering at least a portion of a non-human animals body, and a layer of material, and covering at least a portion of the non-human animal during a surgical procedure with the cover.
Abstract:
Meter electronics (20) for processing sensor signals in a flow meter and for computing mass flow rate, density or volume flow rate includes an interface (201) for receiving a first sensor signal and a second sensor signal and a processing system (203) in communication with the interface (201) and configured to generate a ninety degree phase shift from the first sensor signal with a Hilbert transform and compute a phase difference from the ninety degree phase shift, the first sensor signal and the second sensor signal. A frequency is computed from the first sensor signal and the ninety degree phase shift. A second ninety degree phase shift can be generated from the second sensor signal.
Abstract:
An apparatus for coating or breading food products, such as chicken parts, includes a rotating drum with end caps closing the loading and discharge ends of the drum. Apertures are defined in the end caps for the passage of the food product, in which the apertures are situated along the central axis of the drum. A spiral grate inside the drum receives the food product and conveys it toward the discharge end. The spiral grate supports the food product proximate the central axis so that the product is more fully and uniformly coated with the particulate material. The spiral grate is configured with a gap at the discharge end so that a portion of a discharge ramp may be disposed within the gap to receive the prepared food product for discharge.
Abstract:
This invention relates to a method for combining the multiple steps of hydration, cooking, and pasteurization of a food product into one simplified process. In one embodiment, this invention relates to a method for in-package hydration, cooking and pasteurization of a food product in a single step comprising (a) combining at least one low moisture food component and an aqueous based component in a heat-stable, sealable container wherein an effective amount of the aqueous based component is present to allow proper hydration and cooking; (b) sealing the heat-stable, sealable container; and (c) treating the sealed container at a temperature and time effective to hydrate, cook, and pasteurize the low moisture food product in a single step.