摘要:
A radar apparatus measures at least one characteristic of at least one object even in a near field. A sweep generator generates a sweep signal to modulate an oscillator to generate a varying frequency signal. A transmitter transmits the varying frequency signal as a radar signal. A receiver receives a reflected radar signal to produce a received signal using the varying frequency signal. A compensation signal memory holds a previously stored compensation signal. A compensation circuit compensates the received signal based on the previously stored compensation signal to produce a compensated received signal. A frequency transformation circuit transforms the compensated received signal to produce a frequency spectrum signal. A peak detector measures the characteristic of the object based on a peak of the frequency spectrum signal. When operating in a calibration mode and the reflected radar signal is quieted, the received signal is written into the compensation signal memory.
摘要:
A radar apparatus measures at least one characteristic of at least one object. A sweep generator generates a sweep signal to modulate an oscillator to generate a varying frequency signal. A transmitter transmits the varying frequency signal as a radar signal. A receiver receives a reflected radar signal to produce a received signal using the varying frequency signal. A compensation signal memory holds a previously stored compensation signal. A compensation circuit compensates the received signal based on the previously stored compensation signal to produce a compensated received signal. A quiet switch quiets the reflected radar signal and determines the previously stored compensation signal, during calibration of the radar apparatus, and the received signal is written into the compensation signal memory. Switched loads can be used to quiet the reflected radar signal. For field calibration, the compensated signal can be adjusted but not necessarily written back into the compensation signal memory.
摘要:
A radar apparatus measures at least one characteristic of at least one object even in a near field. A sweep generator generates a sweep signal to modulate an oscillator to generate a varying frequency signal. A transmitter transmits the varying frequency signal as a radar signal. A receiver receives a reflected radar signal to produce a received signal using the varying frequency signal. A compensation signal memory holds a previously stored compensation signal. A compensation circuit compensates the received signal based on the previously stored compensation signal to produce a compensated received signal. A frequency transformation circuit transforms the compensated received signal to produce a frequency spectrum signal. A peak detector measures the characteristic of the object based on a peak of the frequency spectrum signal. When operating in a calibration mode and the reflected radar signal is quieted, the received signal is written into the compensation signal memory.
摘要:
A radar apparatus measures at least one characteristic of at least one object. A sweep generator generates a sweep signal to modulate an oscillator to generate a varying frequency signal. A transmitter transmits the varying frequency signal as a radar signal. A receiver receives a reflected radar signal to produce a received signal using the varying frequency signal. A compensation signal memory holds a previously stored compensation signal. A compensation circuit compensates the received signal based on the previously stored compensation signal to produce a compensated received signal. A quiet switch quiets the reflected radar signal and determines the previously stored compensation signal, during calibration of the radar apparatus, and the received signal is written into the compensation signal memory. Switched loads can be used to quiet the reflected radar signal. For field calibration, the compensated signal can be adjusted but not necessarily written back into the compensation signal memory.
摘要:
An onboard starter-interrupt device uses a Personal Area Network (PAN) to facilitate communication between a wireless device (such as a cellular telephone or personal digital assistant (PDA)) and the onboard device (also referred to interchangeably as a vehicle control device or a payment enforcement device) installed on a vehicle. The PAN can be implemented using, for example, the well-known Bluetooth protocol. The use of a PAN avoids the need for a visible keypad or other input device installed in the vehicle. The interface with the PAN also facilitates direct communication (including voice communication) using an existing cell phone. The interface with the PAN further allows a user or administrator to configure the operation of the onboard device using input/output components of the wireless device.