Abstract:
A method of operating a gas turbine engine is provided. The method includes discharging pilot fuel into a combustion chamber from a nozzle through at least one pilot fuel outlet defined in a tip of the nozzle, discharging steam from the nozzle through a plurality of steam outlets that are spaced circumferentially about the plurality of pilot fuel outlets, and discharging primary fuel from the nozzle through a plurality of primary fuel outlets that are circumferentially aligned with the plurality of steam outlets. To facilitate mixing the primary fuel with the steam, the primary fuel is discharged from the nozzle tip at an oblique angle with respect to a centerline extending through the nozzle tip.
Abstract:
A method of operating a gas turbine engine is provided. The method includes discharging pilot fuel into a combustion chamber from a nozzle through at least one pilot fuel outlet defined in a tip of the nozzle, discharging steam from the nozzle through a plurality of steam outlets that are spaced circumferentially about the plurality of pilot fuel outlets, and discharging primary fuel from the nozzle through a plurality of primary fuel outlets that are circumferentially aligned with the plurality of steam outlets. To facilitate mixing the primary fuel with the steam, the primary fuel is discharged from the nozzle tip at an oblique angle with respect to a centerline extending through the nozzle tip.
Abstract:
A method for operating a gas turbine engine facilitates reducing an amount of emissions from a combustor. The combustor includes a mixer assembly including a pilot mixer, a main mixer, and a centerbody that extends therebetween. The pilot mixer includes a pilot fuel nozzle and a plurality of axial swirlers. The main mixer includes a main swirler and a plurality of fuel injection ports. The method comprises injecting fuel into the combustor through the pilot mixer, such that the fuel is discharged downstream from the pilot mixer axial swirlers, and directing flow exiting the pilot mixer with a lip extending from the centerbody into a pilot flame zone downstream from said pilot mixer.
Abstract:
A combustor liner has a stepped combustor liner surface and an overhang portion forming an air cooling slot. A contoured rear facing edge of the overhang portion reduces turbulence of combustion gas flow and reduces a combustor liner surface area exposed to combustion gases. A thermal barrier coating is also applied to the contoured rear facing edge, reducing heat flow into the overhang portion and hence reducing the operating temperature of the combustor liner. Thus, the amount of cooling air is reduced, which can reduce exhaust emissions, increase engine performance and extend a working life of the combustor assembly.
Abstract:
A metal plate 20 for a dual plate wafer check valve.A central portion 36 of the D shaped plate 20 is reinforced such as by means of a raised area 36 on either or both sides of the plate to resist deformation when subjected to reverse pressure in the valve closed position, while the D shaped edge portion 32 of the plate is made sufficiently flexible to maintain or improve sealing engagement with a valve seat even when the valve seat is distorted by the effect of reverse pressure in the valve closed position.
Abstract:
A carburetor for the combustor of a gas turbine engine wherein a swirler and a venturi cooperate to atomize and mix air and fuel for the combustor, wherein a downstream mounted integrally formed sleeve and splash plate is provided to control the flow of the air/fuel mixture into the combustor. The integral splash plate and sleeve has protuberances formed on its upstream surface to increase the area impinged by cooling air and thereby enhance cooling of the splash plate flange thereof.
Abstract:
A method for operating a gas turbine engine facilitates reducing an amount of emissions from a combustor. The combustor includes a mixer assembly including a pilot mixer, a main mixer, and a centerbody that extends therebetween. The pilot mixer includes a pilot fuel nozzle and a plurality of axial swirlers. The main mixer includes a main swirler and a plurality of fuel injection ports. The method comprises injecting fuel into the combustor through the pilot mixer, such that the fuel is discharged downstream from the pilot mixer axial swirlers, and directing flow exiting the pilot mixer with a lip extending from the centerbody into a pilot flame zone downstream from said pilot mixer.
Abstract:
A double annular combustor having concentrically disposed inner and outer annular combustors including an inner dome having an inner portion and an outer portion, an outer dome having an inner portion and an outer portion, wherein the outer dome inner portion is connected to the inner dome outer portion, and a substantially annular centerbody disposed between the inner dome and the outer dome. The centerbody includes a plurality of structurally independent arcuate segments, wherein each centerbody segment is retained in position via an interference fit between a first flange of such centerbody extending downstream and a hook in the inner dome outer portion and/or via a clamping fit of a second flange of the centerbody extending upstream to a flange of the inner dome outer portion.
Abstract:
A double annular combustor having concentrically disposed inner and outer annular combustors is provided with inner and outer domes. A centerbody is disposed between the inner and outer domes and is constructed of a plurality of annular segments. Each segment includes an upper wall, a lower wall, an upstream wall and a downstream end. The upper and lower walls include flanges extending therefrom to form cavities, within which are cooling holes. Pins are also provided which extend between the upper and lower walls of the centerbody to augment the cooling and structural connection thereof.