Abstract:
An optical domain spectrum analyzer/channelizer employs multicasting of an analog signal onto a wavelength division multiplexing grid, followed by spectral slicing using a periodic optical domain filter. This technique allows for a large number of high resolution channels. Wideband, 100% duty cycle, spectrum analysis or channelization is made possible permitting continuous time wideband spectral monitoring. The instantaneous bandwidth of the spectrum analyzer/channelizer is equal to the full radio frequency bandwidth of the analyzer/channelizer.
Abstract:
A method for forming planar-waveguide Bragg grating in a curved waveguide comprises: forming a long chirped planar-waveguide Bragg grating in an Archimedes' spiral such that a long length of the waveguide can fit in a small chip area where the grating is formed in the curved waveguide; using periodic width modulation to form the planar-waveguide Bragg grating on the curved waveguide, and where the formation of the periodic width modulation occurs during the etching of the waveguide core; using rectangular width modulation to create Bragg gratings with a higher order than 1st order to allow a larger grating period and larger modulation depth, using waveguide width tapering while keeping the width modulation period constant to introduce chirp to the planar-waveguide Bragg grating where the index of refraction is a function of waveguide width, by applying a specific width tapering to create a desired arbitrary chirp profile.
Abstract:
An integrated circuit includes a holographic recording material substantially filling a cavity in a semiconductor layer. During operation of the integrated circuit, a holographic pattern in the holographic recording is reconstructed and used to diffract an optical signal propagating in a plane of an optical waveguide, which is defined in the semiconductor layer out of the plane through the cavity. In this way, the holographic recording material may be used to couple the optical signal to an optical fiber or another integrated circuit.
Abstract:
An integrated circuit includes a holographic recording material substantially filling a cavity in a semiconductor layer. During operation of the integrated circuit, a holographic pattern in the holographic recording is reconstructed and used to diffract an optical signal propagating in a plane of an optical waveguide, which is defined in the semiconductor layer out of the plane through the cavity. In this way, the holographic recording material may be used to couple the optical signal to an optical fiber or another integrated circuit.