Abstract:
A window surround molding is secured on a vehicle door flange with a retainer clip. The molding extends in a longitudinal direction and has a cross-section including first and second channels separated by a Dutch bend. The flange is disposed in the second channel on one side of the Dutch bend. The clip is disposed in the first channel on an opposite side of the Dutch bend. An arm extends in the longitudinal direction away from first and second ends of the clip and engages the molding to secure the clip within the first channel. The clip also includes a lower edge that engages the Dutch bend. A flex tab protrudes from a front face of the clip and engages the flange to secure the molding on the flange and to prevent rotation of the molding relative to the flange.
Abstract:
A glass run channel for a vehicle door window opening includes first and second mutually spaced legs having relatively high hardness, a trim lip comprising a member having relatively high hardness and a relatively soft laminate covering a surface of the member. The trim lip includes a hard low friction ramp. The laminate incorporates a low durometer bead and the trim lip includes a low durometer interface to one of the legs.
Abstract:
An outer belt molding for a vehicle includes a body portion having a first end and a second end. A cap is disposed at the first end of the body portion, and an anti-rattle bumper is disposed at the second end of the body portion. A window sealing arm is compliantly coupled to the body portion at a location between the cap and the anti-rattle bumper, and forms an acute angle with the first end of the body portion. Additionally, a body sealing arm is compliantly coupled to the window sealing arm and extends toward the body portion.
Abstract:
A retention clip for attaching an outer belt weatherstrip to a flange includes a backing plate and an anti-rotation feature attached thereto. The anti-rotation feature biases against the flange to draw the backing plate against the flange to remove lash from between the flange and the backing plate in a lateral direction relative to a first primary axis of the retention clip. An axial biasing member biases against the top edge of the flange to remove lash from between a lower edge of the flange and a latch of the retention clip in an axial direction along the first primary axis. A spacing element engages an interior surface of the outer belt weatherstrip in abutting engagement to resist movement of the outer belt weatherstrip relative to the retention clip along the first primary axis. A release mechanism allows the retention clip to disengage from the flange.
Abstract:
An outer belt molding for a vehicle includes a body portion having a first end and a second end. A cap is disposed at the first end of the body portion, and an anti-rattle bumper is disposed at the second end of the body portion. A window sealing arm is compliantly coupled to the body portion at a location between the cap and the anti-rattle bumper, and forms an acute angle with the first end of the body portion. Additionally, a body sealing arm is compliantly coupled to the window sealing arm and extends toward the body portion.
Abstract:
A retention clip for attaching an outer belt weatherstrip to a flange includes a backing plate and an anti-rotation feature attached thereto. The anti-rotation feature biases against the flange to draw the backing plate against the flange to remove lash from between the flange and the backing plate in a lateral direction relative to a first primary axis of the retention clip. An axial biasing member biases against the top edge of the flange to remove lash from between a lower edge of the flange and a latch of the retention clip in an axial direction along the first primary axis. A spacing element engages an interior surface of the outer belt weatherstrip in abutting engagement to resist movement of the outer belt weatherstrip relative to the retention clip along the first primary axis. A release mechanism allows the retention clip to disengage from the flange.
Abstract:
A glass run channel for a vehicle door window opening includes first and second mutually spaced legs having relatively high hardness, a trim lip comprising a member having relatively high hardness and a relatively soft laminate covering a surface of the member. The trim lip includes a hard low friction ramp on a reverse facing lip. The trim lip incorporates a low durometer bead at the door surface interference and a low durometer interface to the high hardness leg, allowing the trim lip to operate independently from the inboard leg.