Abstract:
A cleaning system and method for in-process sensors wherein a scouring jet discharges process fluid as the cleaning agent to remove solids and other contaminants from the surface of the sensor.
Abstract:
The disclosure is directed to a process for purifying a titanium chloride-containing feedstock using an activated carbon bed, comprising: (a) providing the titanium chloride-containing feedstock comprising an impurity, such as arsenic, and at least one tracker species selected from the group consisting of phosgene, carbonyl sulfide, sulfur dioxide, carbon disulfide, thionyl chloride, sulfur chloride, SO2Cl2, carbon dioxide, and hydrochloric acid and combinations thereof; (b) feeding the titanium chloride-containing feedstock to the activated carbon bed; (c) contacting the titanium chloride-containing feedstock with the activated carbon by flowing the feedstock through the activated carbon bed to remove at least a portion of both the tracker species and the impurity from the feedstock to form a treated product; (d) continuing the flow of the titanium chloride-containing feedstock at least until the tracker species is detected in the treated product; and (e) regenerating the activated carbon bed.
Abstract:
A cleaning system and method for in-process sensors wherein a scouring jet discharges process fluid as the cleaning agent to remove solids and other contaminants from the surface of the sensor.
Abstract:
The disclosure relates to a process for making titanium dioxide, comprising: reacting titanium tetrachloride with oxygen by contacting the titanium tetrachloride with the oxygen in a vapor phase reactor under mixing conditions and at an elevated temperature to form a gaseous product stream containing titanium dioxide; separating the titanium dioxide from the gaseous product stream to form a process stream; analyzing the process stream to detect a concentration of titanium tetrachloride in the process stream; comparing the concentration of titanium tetrachloride detected in the process stream to an aim point concentration; and modifying the oxidation conditions to restore or maintain the concentration of titanium tetrachloride in the process stream at the aim point. In one embodiment, the process further comprises contacting the gaseous product stream with silicon tetrachloride under mixing conditions and at an elevated temperature to at least partially encapsulate the titanium dioxide with a silicon-containing compound and separating the at least partially encapsulated titanium dioxide from the gaseous product stream and analyzing the process stream to detect a concentration silicon tetrachloride for comparison to a silicon tetrachloride aim point concentration so that the conditions for silicon tetrachloride contacting can be modified to restore or maintain the concentration of silicon tetrachloride in the process stream.
Abstract:
The disclosure relates to a process for making titanium dioxide, comprising: reacting titanium tetrachloride with oxygen by contacting the titanium tetrachloride with the oxygen in a vapor phase reactor under mixing conditions and at an elevated temperature to form a gaseous product stream containing titanium dioxide; separating the titanium dioxide from the gaseous product stream to form a process stream; analyzing the process stream to detect a concentration of titanium tetrachloride in the process stream; comparing the concentration of titanium tetrachloride detected in the process stream to an aim point concentration; and modifying the oxidation conditions to restore or maintain the concentration of titanium tetrachloride in the process stream at the aim point. In one embodiment, the process further comprises contacting the gaseous product stream with silicon tetrachloride under mixing conditions and at an elevated temperature to at least partially encapsulate the titanium dioxide with a silicon-containing compound and separating the at least partially encapsulated titanium dioxide from the gaseous product stream and analyzing the process stream to detect a concentration silicon tetrachloride for comparison to a silicon tetrachloride aim point concentration so that the conditions for silicon tetrachloride contacting can be modified to restore or maintain the concentration of silicon tetrachloride in the process stream.
Abstract:
The present invention is a process for controlling, at an aim point, the passivation of aluminum chloride in the chlorinator discharge stream in a process for making titanium tetrachloride.
Abstract:
The disclosure relates to a process for making titanium dioxide, comprising: reacting titanium tetrachloride with oxygen by contacting the titanium tetrachloride with the oxygen in a vapor phase reactor under mixing conditions and at an elevated temperature to form a gaseous product stream containing titanium dioxide; separating the titanium dioxide from the gaseous product stream to form a process stream; analyzing the process stream to detect a concentration of titanium tetrachloride in the process stream; comparing the concentration of titanium tetrachloride detected in the process stream to an aim point concentration; and modifying the oxidation conditions to restore or maintain the concentration of titanium tetrachloride in the process stream at the aim point. In one embodiment, the process further comprises contacting the gaseous product stream with silicon tetrachloride under mixing conditions and at an elevated temperature to at least partially encapsulate the titanium dioxide with a silicon-containing compound and separating the at least partially encapsulated titanium dioxide from the gaseous product stream and analyzing the process stream to detect a concentration silicon tetrachloride for comparison to a silicon tetrachloride aim point concentration so that the conditions for silicon tetrachloride contacting can be modified to restore or maintain the concentration of silicon tetrachloride in the process stream.
Abstract:
A cleaning system and method for in-process sensors wherein a scouring jet discharges process fluid as the cleaning agent to remove solids and other contaminants from the surface of the sensor.