Abstract:
The disclosure provides a polymer composition comprising a treated inorganic particle having improved photostability and improved anti-microbial properties, wherein the treated inorganic particle comprises: a inorganic core particle; a first treatment of a silicon compound, wherein the silicon compound is added in a single step; and a second treatment comprising a co-precipitated zinc oxide and alumina.
Abstract:
The disclosure provides a treated inorganic particle, in particular a titanium dioxide particle, having reduced photoactivity, lower acid solubility and improved anti-microbial properties comprising: an inorganic core particle, in particular a titanium dioxide particle; a first treatment of silica, wherein the silica is added in a single step; and a second treatment comprising co-precipitated zinc oxide and alumina. These particles have reduced photoactivity, lower acid solubility and improved anti-microbial properties.
Abstract:
The present disclosure relates to a vapor phase process for producing a substantially anatase-free titanium dioxide pigment comprising reacting a vaporous titanium dioxide precursor and an oxygen containing gas in a reactor; and introducing a mixture of liquid silicon halide and liquid titanium dioxide precursor into the reactor at a point downstream of the addition of the vaporous titanium dioxide precursor, and the oxygen containing gas, and at a process temperature of about 1200° C. to about 1600° C. to produce titanium dioxide particles that are substantially encapsulated in silicon dioxide.
Abstract:
This disclosure relates to a process for producing titanium dioxide, comprising: a) reacting a alloy comprising silicon and aluminum having a melting point of about 482° C. to about 660° C., with chlorine gas at temperatures above 190° C. to form chlorides of silicon and aluminum; b) adding titanium tetrachloride to the chlorides of silicon and aluminum of step (a); c) oxidizing the chlorides of silicon and aluminum and titanium tetrachloride of step (b); and d) forming titanium dioxide.
Abstract:
This disclosure relates to a process for producing titanium dioxide, comprising: a) reacting an alloy comprising a metal selected from the group consisting of aluminum, titanium and mixtures thereof, wherein one metal is a major component of the alloy, and an element selected from the group consisting of Li, Be, B, Na, Mg, Al, P, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, and Bi, with chlorine gas to form chlorides of aluminum, titanium or mixtures thereof and chlorides of the element selected from the group consisting of Li, Be, B, Na, Mg, Al, P, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, and Bi, at or above the boiling point of the chloride of the major component of the alloy; with the proviso that the element does not comprise Ti when the metal is Ti and does not comprise Al when the metal is Al; (b) adding titanium tetrachloride to the chlorides formed in step (a); (c) oxidizing the chlorides formed in step (a), and titanium tetrachloride of step (b); and (d) forming titanium dioxide.
Abstract:
A process for producing titanium dioxide, comprising: a) reacting an alloy comprising a metal selected from the group consisting of aluminum, titanium and mixtures thereof, wherein one metal is a major component of the alloy, and an element, with chlorine gas to form chlorides of aluminum, titanium or mixtures thereof and chlorides of the element, at or above the boiling point of the chloride of the major component of the alloy; with the proviso that the element does not comprise Ti when the metal is Ti and does not comprise Al when the metal is Al; (b) adding titanium tetrachloride to the chlorides formed in step (a); (c) oxidizing the chlorides formed in step (a), and titanium tetrachloride of step (b); and (d) forming titanium dioxide.
Abstract:
This disclosure relates to inorganic particles, typically inorganic metal oxide or mixed metal oxide particles, and more typically titanium dioxide (TiO2) particles, comprising at least about 0.002% of tungsten, based on the total weight of the inorganic particles, wherein inorganic particles have a photostability ratio (PSR) of at least about 2, as measured by the Ag+ photoreduction rate, and color as depicted by an L* of at least about 97.0, and b* of less than about 4. These titanium dioxide particles comprising tungsten may further comprise alumina.
Abstract:
One aspect of the invention is to provide a composition comprising a titanium dioxide particle having on the surface of said particle a substantially encapsulating layer comprising a pyrogenically-deposited metal oxide; said substantially encapsulating layer having on its surface at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof. Another aspect of the invention is to provide processes for producing said composition.
Abstract:
This disclosure relates to a process for producing titanium dioxide, comprising: a) providing a quantity of liquid titanium tetrahalide for reacting with an oxygen-containing gas; b) vaporizing a first portion of the liquid titanium tetrahalide and reacting the titanium tetrahalide vapor and the oxygen-containing gas, in a first stage of a reaction zone, the reaction zone temperature ranging from at least about 650° C.—to form a reaction product at least containing titanium dioxide and oxygen-containing gas and passing the reaction product, more typically in the vapor phase, to at least one additional stage of the reaction zone; and c) charging at least one additional portion of the liquid titanium tetrahalide to the at least one additional stage of the reaction zone to cool the titanium dioxide and to react with the oxygen-containing gas to form additional titanium dioxide. This process results in a high conversion to titanium dioxide and formation of titanium dioxide powders having improved particle size and size distribution.
Abstract:
Disclosed herein are pigments comprising mostly rutile TiO2, wherein the mostly rutile TiO2 consists essentially of low abrasion TiO2 particles produced by introducing a metal halide into the chloride process. Further disclosed are ink, can coatings, fibers, papers, and plastics comprising the pigment. Also disclosed herein are pigments comprising the low abrasion TiO2 pigments comprising TiO2 particles which have been further heat treated at a temperature of at least about 800° C. in an oxidizing atmosphere for a time period of at least about 1 hour.